留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳风磁帆推进性能数值研究

蔡静媛 李来 朱桂平

蔡静媛, 李来, 朱桂平. 太阳风磁帆推进性能数值研究[J]. 航空动力学报, 2023, 38(4):850-859 doi: 10.13224/j.cnki.jasp.20210527
引用本文: 蔡静媛, 李来, 朱桂平. 太阳风磁帆推进性能数值研究[J]. 航空动力学报, 2023, 38(4):850-859 doi: 10.13224/j.cnki.jasp.20210527
CAI Jingyuan, LI Lai, ZHU Guiping. Numerical study on propulsion performance of solar wind magnetic sail[J]. Journal of Aerospace Power, 2023, 38(4):850-859 doi: 10.13224/j.cnki.jasp.20210527
Citation: CAI Jingyuan, LI Lai, ZHU Guiping. Numerical study on propulsion performance of solar wind magnetic sail[J]. Journal of Aerospace Power, 2023, 38(4):850-859 doi: 10.13224/j.cnki.jasp.20210527

太阳风磁帆推进性能数值研究

doi: 10.13224/j.cnki.jasp.20210527
详细信息
    作者简介:

    蔡静媛(1998-),女,硕士生,主要从事新型推进技术研究

    通讯作者:

    朱桂平(1983-),女,副教授,博士,主要从事新型推进技术研究。E-mail:zhuguiping@nuaa.edu.cn

  • 中图分类号: V439.4

Numerical study on propulsion performance of solar wind magnetic sail

  • 摘要:

    利用考虑行星际磁场作用的磁流体动力学模型,建立了磁帆三维数值模拟方法,对计算方法的可靠性进行了验证,发现了线圈尾部的磁重联现象,研究了太阳风来流速度、等离子体离子数密度以及攻角对磁帆推进性能的影响。得出以下结论:不同速度、不同离子数密度的太阳风主要通过改变z方向电流的大小改变洛伦兹力,进而影响磁帆的推进性能:太阳风离子数密度恒定时,随着来流速度由30 km/s逐渐增大至75 km/s,z方向电流最大值由4205 A/m2增至14709 A/m2,磁帆所受推力由3.39 N增至13.40 N;太阳风来流速度恒定时,随着离子数密度由1.8×1019 m−3增大至4.5×1019 m−3z方向电流最大值由6039 A/m2增至10585 A/m2,磁帆所受推力由6.62 N增至12.27 N。磁帆攻角变化,主要通过磁场构型的变化影响磁帆推进性能:攻角为0°和90°时的磁层半径分别为0.14 m和0.18 m,磁帆所受推力分别为6.62 N和11.03 N,由此推测实际应用中保持线圈轴线与太阳风来流方向平行,可获得更大推力。系统研究了相关因素对磁帆推进性能的影响,可为磁帆的推力调节研究提供参考和支持,对未来磁帆的深入研究具有重要的参考价值。

     

  • 图 1  实验用线圈示意图[9]

    Figure 1.  Schematic diagram of test coil[9]

    图 2  计算模型示意图

    Figure 2.  Schematic diagram of calculation model

    图 3  z=0 m平面区域计算网格示意图

    Figure 3.  Schematic diagram of calculation grid for z=0 m plane

    图 4  z=0 m平面外加磁场流线分布

    Figure 4.  Streamline distribution of external magnetic field on z=0 m plane

    图 5  数值模拟结果与文献[9]中实验结果的对比图

    Figure 5.  Comparison of numerical results with experimental results in Ref. [9]

    图 6  磁场分布

    Figure 6.  Distribution of magnetic field

    图 7  太阳风与磁场作用后流场、电流及磁场分布

    Figure 7.  Distribution of flow field, electric current and magnetic field after interaction of solar wind flow and magnetic field

    图 8  不同太阳风来流速度下z方向电流分布

    Figure 8.  Current distribution in z direction at different solar wind incoming velocities

    图 9  不同来流速度的太阳风与磁场作用后的磁场流线分布

    Figure 9.  Streamline distribution of magnetic field after interaction of magnetic field and solar wind with different incoming velocities

    图 10  不同太阳风来流速度下相关参数

    Figure 10.  Parameters at various solar wind incoming velocities

    图 11  不同电导率下z方向电流分布

    Figure 11.  Current distribution in z direction at different conductivities

    图 12  不同电导率的太阳风与磁场作用后的磁场流线分布

    Figure 12.  Streamline distribution of magnetic field interacted with solar wind possessing different conductivities

    图 13  不同攻角下太阳风与磁场作用后的磁场流线分布

    Figure 13.  Streamline distribution of magnetic field interacted with solar wind at different angles of attack

    表  1  计算结果与文献[9]中实验结果

    Table  1.   Calculation results and experimental results in Ref. [9]

    参数计算值实验值
    L/m0.140.15
    riL/m0.038
    riL/L0.270.24
    Cd3.527
    F/N6.621.64
    下载: 导出CSV

    表  2  不同电导率计算结果

    Table  2.   Calculation results at different conductivities

    σ/(S/m)ni/1019 m−3L/mriL/mriL/LCdF/N
    2 0001.80.140.0380.2713.5276.62
    30002.80.130.0300.2343.5458.92
    40004.50.120.0240.2003.56012.27
    下载: 导出CSV

    表  3  不同攻角计算结果

    Table  3.   Calculation results at different angles of attack

    α/(°)L/mriL/mriL/LCdF/N
    00.140.0380.273.5276.62
    900.180.0380.213.55611.03
    下载: 导出CSV
  • [1] ZUBRIN R M,ANDREWS D G. Magnetic sails and interplanetary travel[J]. Journal of Spacecraft and Rockets,1991,28(2): 197-203. doi: 10.2514/3.26230
    [2] ANDREWS D, ZUBRIN R. Progress in magnetic sails[R]. AIAA-1990-2367, 1990.
    [3] NISHIDA H, OGAWA H, FUNAKI I, et al. Verification of momentum transfer process on magnetic sail using MHD model[R]. AIAA-2005-4463, 2005.
    [4] AKITA D, SUZUKI K. Kinetic analysis on plasma flow of solar wind around magnetic sail[R]. AIAA-2005-4791, 2005.
    [5] KAJIMURA Y,USUI H,FUNAKI I,et al. Hybrid particle-in-cell simulations of magnetic sail in laboratory experiment[J]. Journal of Propulsion and Power,2010,26(1): 159-166. doi: 10.2514/1.45096
    [6] KAJIMURA Y,FUNAKI I,MATSUMOTO M,et al. Thrust and attitude evaluation of magnetic sail by three-dimensional hybrid particle-in-cell code[J]. Journal of Propulsion and Power,2012,28(3): 652-663. doi: 10.2514/1.B34334
    [7] ASHIDA Y,FUNAKI I,YAMAKAWA H,et al. Thrust evaluation of a magnetic sail by flux-tube model[J]. Journal of Propulsion and Power,2012,28(3): 642-651. doi: 10.2514/1.B34332
    [8] ASHIDA Y,YAMAKAWA H,FUNAKI I,et al. Thrust evaluation of small-scale magnetic sail spacecraft by three-dimensional particle-in-cell simulation[J]. Journal of Propulsion and Power,2014,30(1): 186-196. doi: 10.2514/1.B35026
    [9] UENO K, KIMURA T, AYABE T, et al. Laboratory experiment of magnetoplasma sail: Part 1 pure magnetic sail[R]. International Electric Propulsion Conference, IEPC-2007-2061, 2007.
    [10] UENO K,FUNAKI I,KIMURA T,et al. Thrust measurement of a pure magnetic sail using parallelogram-pendulum method[J]. Journal of Propulsion and Power,2009,25(2): 536-539. doi: 10.2514/1.39211
    [11] WINGLEE R M,SLOUGH J,ZIEMBA T,et al. Mini-magnetospheric plasma propulsion: tapping the energy of the solar wind for spacecraft propulsion[J]. Journal of Geophysical Research: Space Physics,2000,105(A9): 21067-21077. doi: 10.1029/1999JA000334
    [12] WINGLEE R M, ZIEMBA T, EURIPIDES P, et al. Computer modeling of the laboratory testing of mini-magnetospheric plasma propulsion (M2P2)[R]. International Electric Propulsion Conference, IEPC-2001-2200, 2001.
    [13] WINGLEE R M, EURIPIDES P, ZIEMBA T, et al. Simulation of mini-magnetospheric plasma propulsion (M2P2) interacting with an external plasma wind[R]. AIAA 2003-5224, 2003.
    [14] ASHIDA Y,FUNAKI I,YAMAKAWA H,et al. Two-dimensional particle-in-cell simulation of magnetic sails[J]. Journal of Propulsion and Power,2014,30(1): 233-245. doi: 10.2514/1.B34692
    [15] YAMAKAWA H,FUNAKI I,NAKAYAMA Y,et al. Magneto-plasma sail: an engineering satellite concept and its application for outer planet missions[J]. Acta Astronautica,2006,59(8/9/10/11): 777-784. doi: 10.1016/j.actaastro.2005.07.003
    [16] FUNAKI I, KIMURA T, UENO K, et al. Laboratory experiment of magnetoplasma sail: Part 2 magnetic field inflation[R]. International Electric Propulsion Conference, IEPC-2007-2094, 2007.
    [17] MORITAKA T,USUI H,NUNAMI M,et al. Full particle-in-cell simulation study on magnetic inflation around a magneto plasma sail[J]. IEEE Transactions on Plasma Science,2010,38(9): 2219-2228. doi: 10.1109/TPS.2010.2056392
    [18] NISHIDA H,OGAWA H,FUNAKI I,et al. Two-dimensional magnetohydrodynamic simulation of a magnetic sail[J]. Journal of Spacecraft and Rockets,2006,43(3): 667-672. doi: 10.2514/1.15717
    [19] 尹真. 电动力学[M]. 北京: 科学出版社, 2005.
    [20] NISHIDA H,FUNAKI I. Analysis of thrust characteristics of a magnetic sail in a magnetized solar wind[J]. Journal of Propulsion and Power,2012,28(3): 636-641. doi: 10.2514/1.B34260
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  162
  • HTML浏览量:  59
  • PDF量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回