留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

突加基础冲击激励下转子系统振动特性试验

陈伟 吴泽宇 韩佳奇 刘璐璐 罗刚 赵振华

陈伟, 吴泽宇, 韩佳奇, 等. 突加基础冲击激励下转子系统振动特性试验[J]. 航空动力学报, 2023, 38(4):878-888 doi: 10.13224/j.cnki.jasp.20210537
引用本文: 陈伟, 吴泽宇, 韩佳奇, 等. 突加基础冲击激励下转子系统振动特性试验[J]. 航空动力学报, 2023, 38(4):878-888 doi: 10.13224/j.cnki.jasp.20210537
CHEN Wei, WU Zeyu, HAN Jiaqi, et al. Test on vibration characteristics of rotor system under sudden base shock excitation[J]. Journal of Aerospace Power, 2023, 38(4):878-888 doi: 10.13224/j.cnki.jasp.20210537
Citation: CHEN Wei, WU Zeyu, HAN Jiaqi, et al. Test on vibration characteristics of rotor system under sudden base shock excitation[J]. Journal of Aerospace Power, 2023, 38(4):878-888 doi: 10.13224/j.cnki.jasp.20210537

突加基础冲击激励下转子系统振动特性试验

doi: 10.13224/j.cnki.jasp.20210537
基金项目: 国家科技重大专项(2017-Ⅳ-0006-0043)
详细信息
    作者简介:

    陈伟(1968-),男,教授,博士,主要从事航空发动机结构冲击动力学研究。E-mail:chenwei@nuaa.edu.cn

  • 中图分类号: V231.96

Test on vibration characteristics of rotor system under sudden base shock excitation

  • 摘要:

    针对着舰过程中航空发动机转子系统受到的突加基础冲击激励的问题, 基于典型小涵道比涡扇发动机结构特征相似原则设计转子-支承-机匣系统试验器,对突加基础冲击激励下转子系统振动特性进行试验研究。结果表明:突加基础冲击激励瞬时具有显著的冲击效应,转子系统瞬态振动响应加剧并激起转子的正反进动和横向振动模态。转子系统轮盘处振幅比随基础冲击速度的增加而非线性增长,突加纵向基础冲击激励比突加横向基础冲击激励更能影响转子系统的振动特性。

     

  • 图 1  试验器总体结构

    Figure 1.  Overall structure of tester

    图 2  立柱式落震试验台

    Figure 2.  Column type drop test rig

    图 3  传感器测点布置位置

    Figure 3.  Position of sensor measuring points

    图 4  突加纵向基础冲击激励下亚临界状态卧式转子系统压气机盘处振动响应特征

    Figure 4.  Vibration response of compressor disk of horizontal rotor system at subcritical state under longitudinal sudden base shock excitation

    图 5  突加纵向基础冲击激励下超临界状态卧式转子系统压气机盘处振动响应特征

    Figure 5.  Vibration response of compressor disk of horizontal rotor system at supercritical state under longitudinal base shock excitation

    图 6  突加纵向基础冲击激励下亚临界状态卧式转子系统涡轮盘处振动响应特征

    Figure 6.  Vibration response of turbine disk of horizontal rotor system at subcritical state under longitudinal sudden base shock excitation

    图 7  突加纵向基础冲击激励下超临界状态卧式转子系统涡轮盘处振动响应特征

    Figure 7.  Vibration response of turbine disk of horizontal rotor system at supercritical state under longitudinal sudden base shock excitation

    图 8  突加纵向基础冲击激励下卧式转子系统压气机盘处轴心轨迹及振动频谱图(n=5000 r/min)

    Figure 8.  Orbits and spectrograms of compressor disk of horizontal rotor system under longitudinal sudden base shock excitation (n=5000 r/min)

    图 9  突加纵向基础冲击激励下卧式转子系统涡轮盘处轴心轨迹及振动频谱图(n=5000 r/min)

    Figure 9.  Orbits and spectrograms of turbine disk of horizontal rotor system under longitudinal sudden base shock excitation (n=5000 r/min)

    图 10  基础冲击速度对突加纵向基础冲击激励下卧式转子系统振动特性的影响

    Figure 10.  Influence of the impact velocity of base on horizontal rotor system under longitudinal sudden base shock excitation

    图 11  突加纵向基础激励下卧式转子系统压气机盘不同转速时轴心轨迹及振动频谱图(V=6 m/s)

    Figure 11.  Orbits and spectrograms of compressor disk of horizontal rotor system under longitudinal sudden base shock excitation at different speeds (V=6 m/s)

    图 12  突加横向基础激励下立式转子系统压气机盘不同转速时轴心轨迹及振动频谱图(V=6 m/s)

    Figure 12.  Orbits and spectrograms of compressor disk of vertical rotor system under transverse sudden base shock excitation at different speeds (V=6 m/s)

    图 13  基础冲击速度对不同方向突加基础冲击激励下转子系统振动特性的影响

    Figure 13.  Influence of the impact velocity of base on the rotor system under different directions sudden base shock excitation

    表  1  试验工况参数

    Table  1.   Test condition parameters

    转子
    类型
    冲击
    方向
    落震高度
    H/m
    冲击速度
    V/(m/s)
    转子转速
    n/(r/min)
    卧式转子纵向0.110.320.631.031.541.841.52.53.54.55.56.03000,4000,
    5000,7000
    立式转子横向0.200.460.821.281.842.502.03.04.05.06.07.0
    下载: 导出CSV
  • [1] 洪杰, 马艳红, 张大义. 航空燃气轮机总体结构设计与动力学分析[M]. 北京: 北京航空航天大学出版社, 2014.
    [2] 陈巍,杜发荣,丁水汀,等. 超高速转子系统动力学特性: Ⅱ 碰摩转子[J]. 推进技术,2012,33(6): 866-874.

    CHEN Wei,DU Farong,DING Shuiting,et al. Research on dynamic characteristics for a super-high speed rotor system: Ⅱ rotor system with rubs[J]. Journal of Propulsion Technology,2012,33(6): 866-874. (in Chinese)
    [3] 雷冰龙,李超,何康,等. 共用支承-转子系统耦合振动分析及试验[J]. 航空动力学报,2020,35(11): 2293-2305. doi: 10.13224/j.cnki.jasp.2020.11.006

    LEI Binglong,LI Chao,HE Kang,et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power,2020,35(11): 2293-2305. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.11.006
    [4] NELSON H D,MEACHAM W L,FLEMING D P,et al. Nonlinear analysis of rotor-bearing systems using component mode synthesis[J]. Journal of Engineering for Power,1983,105: 614-660.
    [5] OEZGUEVEN H N,OEZKAN Z L. Whirl speeds and unbalance response of multibearing rotors using finite elements[J]. Journal of Vibration and Acoustics,1984,106(1): 72-79. doi: 10.1115/1.3269158
    [6] GREENHILL L M,BICKFORD W B,NELSON H D. A conical beam finite element for rotor dynamics analysis[J]. Journal of Vibration and Acoustics,1985,107(4): 421-430. doi: 10.1115/1.3269283
    [7] KOIKE H,ISHIHARA K. Impact response of rotor-bearing system to an arbitrary excitation of pedestals: 1st report comparison of linear analysis with experiment[J]. Bulletin of JSME(Japanese Society of Mechanical Engineers),1983,26(220): 1783-1790. doi: 10.1299/jsme1958.26.1783
    [8] SAMALI B,KIM K B,YANG J N. Random vibration of rotating machines under earthquake excitations[J]. Journal of Engineering Mechanics,1986,112(6): 550-565. doi: 10.1061/(ASCE)0733-9399(1986)112:6(550)
    [9] 贺少华,吴新跃. 舰载旋转机械基础冲击响应建模和数值计算[J]. 爆炸与冲击,2011,31(6): 561-566.

    HE Shaohua,WU Xinyue. Shock response modeling and computation of shipboard rotating machinery subjected to base-transferred shock force[J]. Explosion and shock waves,2011,31(6): 561-566. (in Chinese)
    [10] 游震洲,黄其祥,王锋,等. 转子-基础系统的随机不确定建模与振动分析[J]. 航空动力学报,2016,31(1): 1-9. doi: 10.13224/j.cnki.jasp.2016.01.001

    YOU Zhenzhou,HUANG Qixiang,WANG Feng,et al. Random uncertainty modeling and vibration analysis of rotor-foundation system[J]. Journal of Aerospace Power,2016,31(1): 1-9. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.01.001
    [11] 祝长生,陈拥军. 机动飞行时发动机转子系统动力学统一模型[J]. 航空动力学报,2009,24(2): 371-377. doi: 10.13224/j.cnki.jasp.2009.02.012

    ZHU Changsheng,CHEN Yongjun. General dynamic model of aeroengine’s rotor system during maneuvering flight[J]. Journal of Aerospace Power,2009,24(2): 371-377. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.02.012
    [12] DAS A S,DUTT J K,RAY K. Active vibration control of flexible rotors on maneuvering vehicles[J]. AIAA Journal,2010,48(2): 340-353. doi: 10.2514/1.43378
    [13] 李杰,曹树谦,郭虎伦,等. 机动飞行条件下双转子系统动力学建模与响应分析[J]. 航空动力学报,2017,32(4): 835-849. doi: 10.13224/j.cnki.jasp.2017.04.008

    LI Jie,CAO Shuqian,GUO Hulun,et al. Modeling and response analysis of dual-rotor system under maneuvering flight[J]. Journal of Aerospace Power,2017,32(4): 835-849. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.04.008
    [14] 虞烈, 刘恒. 轴承-转子系统动力学[M]. 西安: 西安交通大学出版社, 2001.
    [15] 闻邦椿, 顾家柳, 夏松波, 等. 高等转子动力学-理论、技术与应用[M]. 北京: 机械工业出版社, 2000.
    [16] KANG Y,CHANG Y P,TSAI J W,et al. An investigation in stiffness effects on dynamics of rotor-bearing-foundation systems[J]. Journal of Sound and Vibration,2000,231(2): 343-374. doi: 10.1006/jsvi.1999.2719
    [17] HAN Q, DONG X, WEN B. Resonance capture of rotor system mounted on an elastically supported base[R]. Seoul, Korea: IFToMM 8th International Conference on Rotor Dynamics, 2010.
    [18] CAVALCA K L, OKABE E P. On analysis of rotor- bearing-foundation system[R]. New Delhi, India: IUTAM Symposium on Emerging Trends in Rotor Dynamic, 2011.
    [19] CHEN X,GAN X H,REN G M. Nonlinear responses and bifurcations of a rotor-bearing system supported by squeeze-film damper with retainer spring subjected to base excitations[J]. Nonlinear Dynamics,2020,102(4): 1-35.
    [20] DUCHEMIN M,BERLIOZ A,FERRARIS G. Dynamic behavior and stability of a rotor under base excitation[J]. Journal of Vibration and Acoustics,2006,128(5): 576-585. doi: 10.1115/1.2202159
    [21] DRIOT N,LAMARQUE C H,BERLIOZ A. Theoretical and experimental analysis of a base-excited rotor[J]. Journal of Computational and Nonlinear Dynamics,2006,1(3): 257-263. doi: 10.1115/1.2209648
    [22] 颜文忠,KONSTANTIN S,张大义,等. 基础振动对转子系统动力特性影响的试验研究[J]. 推进技术,2016,37(11): 2157-2164. doi: 10.13675/j.cnki.tjjs.2016.11.021

    YAN Wenzhong,KONSTANTIN S,ZHANG Dayi,et al. Experimental investigation on dynamic characteristics of rotor system subject to foundation vibration[J]. Journal of Propulsion Technology,2016,37(11): 2157-2164. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.11.021
    [23] 杨泽东. 突加高能基础激励载荷作用下转子系统响应特性及稳定性研究[D]. 南京: 南京航空航天大学, 2020.

    YANG Zedong. Study on response characteristics and stability of rotor system under sudden high energy excitation load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  286
  • HTML浏览量:  71
  • PDF量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 网络出版日期:  2022-11-28

目录

    /

    返回文章
    返回