留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冠齿脉冲射流冲击平直靶板对流换热实验

吕元伟 赵韫铎 张靖周 单勇 孙文静 张镜洋 罗欣洋

吕元伟, 赵韫铎, 张靖周, 等. 冠齿脉冲射流冲击平直靶板对流换热实验[J]. 航空动力学报, 2023, 38(4):787-794 doi: 10.13224/j.cnki.jasp.20210538
引用本文: 吕元伟, 赵韫铎, 张靖周, 等. 冠齿脉冲射流冲击平直靶板对流换热实验[J]. 航空动力学报, 2023, 38(4):787-794 doi: 10.13224/j.cnki.jasp.20210538
LÜ Yuanwei, ZHAO Yunduo, ZHANG Jingzhou, et al. Experiment on convective heat transfer of pulsed chevron jet impingement on flat plate[J]. Journal of Aerospace Power, 2023, 38(4):787-794 doi: 10.13224/j.cnki.jasp.20210538
Citation: LÜ Yuanwei, ZHAO Yunduo, ZHANG Jingzhou, et al. Experiment on convective heat transfer of pulsed chevron jet impingement on flat plate[J]. Journal of Aerospace Power, 2023, 38(4):787-794 doi: 10.13224/j.cnki.jasp.20210538

冠齿脉冲射流冲击平直靶板对流换热实验

doi: 10.13224/j.cnki.jasp.20210538
基金项目: 江苏省自然科学基金(BK20210303); 国家自然科学基金(52206091)
详细信息
    作者简介:

    吕元伟(1990-),男,讲师,博士,主要从事航天器传热传质研究。 E-mail:lvyuanwei@nuaa.edu.cn

  • 中图分类号: V235

Experiment on convective heat transfer of pulsed chevron jet impingement on flat plate

  • 摘要:

    采用红外热像测试技术对占空比(DC)恒定为0.5的冠齿脉冲射流冲击平直靶面,在不同雷诺数(5000~20000)、无量纲冲击间距(2~8)和工作频率(10~25 Hz)下进行了对流换热实验研究。结果表明:在小射流冲击间距下,冠齿脉冲射流冲击局部努塞尔数云图在射流驻点附近呈现较为明显波瓣状分布;冠齿喷管在脉冲射流冲击中依然体现出强化对流换热的作用机制,雷诺数和工作频率分别为10000和15 Hz工况下,射流冲击驻点附近的表面传热系数相对圆形脉冲射流提高幅度在20%~30%之间;在冠齿脉冲射流中,脉冲主动激励和冠齿被动诱导激励之间存在着内在的相干机制,导致其对流换热特性与冠齿连续射流和圆形脉冲射流有较大的差异。

     

  • 图 1  射流冲击实验系统示意图

    Figure 1.  Schematic diagram of jet impingement experiment system

    图 2  瞬时努塞尔数云图和时均处理

    Figure 2.  Instantaneous Nusselt number contours and time-averaged treatment

    图 3  加热膜局部热流平衡分析

    Figure 3.  Local thermal balance analysis on heater foil

    图 4  脉冲射流冲击局部努塞尔数分布(Re=10000、f=15 Hz)

    Figure 4.  Local Nusselt number distributions by pulsed jet impingement (Re=10000, f=15 Hz)

    图 5  周向平均努塞尔数径向分布对比(Re=10000、 f=15 Hz)

    Figure 5.  Comparison of circumferentially-averaged Nusselt number alongradial direction( Re=10000, f=15 Hz)

    图 6  不同冲击间距下冠齿脉冲射流冲击周向平均努塞尔数分布(f=15 Hz)

    Figure 6.  Circumferentially-averaged Nusselt number distributions at different nozzle-to-surface distances for chevron-pulsed jet impingement (f=15 Hz)

    图 7  不同工作频率下冠齿脉冲射流冲击周向平均努塞尔数分布(Re=10000)

    Figure 7.  Circumferentially-averaged Nusselt number distributions at different operational frequencies for chevron-pulsed jet impingement (Re=10000)

    表  1  主要实验参数

    Table  1.   Main experimental parameters

    类别参数数值
    冠齿喷管喷管直径 d/mm10
    喷管长度 l/mm120
    冠齿长度 a/mm6
    冠齿数 n6
    脉冲射流频率 f/Hz10~25
    占空比50
    射流雷诺数Re5000~20000
    射流冲击距无量纲距离H/d2,4,6,8
    下载: 导出CSV
  • [1] WRIGHT L S,HAN J C. Heat transfer enhancement for turbine blade internal cooling[J]. Journal of Enhanced Heat Transfer,2014,21(2): 111-140.
    [2] 张井山,毛军逵,李毅,等. 高压涡轮主动间隙控制机匣内部换热特性实验[J]. 航空动力学报,2014,29(2): 298-304.

    ZHANG Jingshan,MAO Junkui,LI Yi,et al. Experiment on heat transfer characteristics inside the casing of high pressure turbine with active clearance control[J]. Journal of Aerospace Power,2014,29(2): 298-304. (in Chinese)
    [3] 柯鹏,杨慧赟,王俊凯,等. 航空发动机帽罩热气膜防冰的加热特性[J]. 航空动力学报,2018,33(3): 530-539. doi: 10.13224/j.cnki.jasp.2018.03.003

    KE Peng,YANG Huiyun,WANG Junkai,et al. Heating characteristics of aero-engine nose cone with film-heating anti-icing system[J]. Journal of Aerospace Power,2018,33(3): 530-539. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.03.003
    [4] CARLOMAGNO G M,IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review[J]. Experimental Thermal and Fluid Science,2014,58(1): 15-35.
    [5] COLUCCI D W,VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J]. Experimental Thermal and Fluid Science,1996,13(1): 71-80. doi: 10.1016/0894-1777(96)00015-5
    [6] BRIGNONI L A,GARIMELLA S V. Effects of nozzle inlet chamfering on pressure drop and heat transfer in confined air jet impingement[J]. International Journal of Heat and Mass Transfer,2000,43(1): 1133-1139.
    [7] LEE J H,LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer,2000,43(1): 3497-3509.
    [8] YU Y Z,ZHANG J Z,XU H S. Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J]. International Journal of Heat and Mass Transfer,2014,72(1): 222-233.
    [9] TRINH X T,FENOT M,DORIGNAC E. Flow and heat transfer of hot impinging jets issuing from lobed nozzles[J]. International Journal of Heat and Fluid Flow,2017,67(1): 185-201.
    [10] HE C X,LIU Y Z. Large-eddy simulation of jet impingement heat transfer using a lobed nozzle[J]. International Journal of Heat and Mass Transfer,2018,125: 828-844. doi: 10.1016/j.ijheatmasstransfer.2018.04.105
    [11] 徐亮,任德祖,马永浩,等. 不同形状喷嘴的旋流冲击射流压力损失和传热特性研究[J]. 航空动力学报,2018,33(11): 2678-2686.

    XU Liang,REN Dezu,MA Yonghao,et al. Pressure loss and heat transfer characteristics experiment of swirling impinging jet with different shape nozzles[J]. Journal of Aerospace Power,2018,33(11): 2678-2686. (in Chinese)
    [12] VIOLATO D,SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids,2011,23(12): 1-25.
    [13] VIOLATO D,IANIRO A,CARDONE G,et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow,2012,37(1): 22-36.
    [14] VINZE R,CHANDEL S,LIMAYE M D,et al. Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle[J]. Experimental Thermal and Fluid Science,2016,78(1): 124-136.
    [15] GUAN T,ZHANG J Z,SHAN Y,et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle: Part 1 experimental analysis[J]. International Journal of Heat and Mass Transfer,2017,106(1): 329-338.
    [16] GUAN T,ZHANG J,SHAN Y. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle: Part 2 numerical analysis[J]. International Journal of Heat and Mass Transfer,2017,106(1): 339-355.
    [17] ZUMBRUNNEN D A,AZIZ M. Convective heat transfer enhancement due to intermittency in an impinging jet[J]. Journal of Heat Transfer,1993,115(1): 91-98. doi: 10.1115/1.2910675
    [18] HOFMANN H M,MOVILEANU D L,KIND M,et al. Influence of a pulsation on heat transfer and flow structure in submerged impinging jets[J]. International Journal of Heat and Mass Transfer,2007,50(1): 3638-3648.
    [19] 周静伟,杨兴贤,耿丽萍,等. 非稳态冲击射流强化传热试验研究[J]. 机械工程学报,2010,46(6): 144-148. doi: 10.3901/JME.2010.06.144

    ZHOU Jingwei,YANG Xingxian,GENG Liping,et al. Experimental investigation on heat transfer augmentation with unsteady impinging jet[J]. Journal of Mechanical Engineering,2010,46(6): 144-148. (in Chinese) doi: 10.3901/JME.2010.06.144
    [20] PERSOONS T,BALGAZINA K,BROWN K,et al. Scaling of convective heat transfer enhancement due to flow pulsation in an axisymmetric impinging jet[J]. Journal of Heat Transfer,2013,135(11): 803-816.
    [21] LÜ Y W,ZHANG J Z,SHAN Y,et al. The experimental investigation of impinging heat transfer of pulsation jet on the flat plate[J]. ASME Journal of Heat Transfer,2018,140(1): 1-11.
    [22] 唐婵,张靖周,谭晓茗,等. 带集气腔的脉冲射流冲击换热实验和数值研究[J]. 航空动力学报,2019,34(6): 1334-1343. doi: 10.13224/j.cnki.jasp.2019.06.016

    TANG Chan,ZHANG Jingzhou,TAN Xiaoming,et al. Experimental and numerical study on pulsed-jet impingement heat transfer with an additional collection chamber[J]. Journal of Aerospace Power,2019,34(6): 1334-1343. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.06.016
    [23] 吕元伟,张靖周,王博滟,等. 冠齿喷嘴射流冲击平直靶面对流换热实验[J]. 航空学报,2018,39(3): 94-100.

    LÜ Yuanwei,ZHANG Jingzhou,WANG Boyan,et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3): 94-100. (in Chinese)
    [24] XIA H,TUCKER P G,EASTWOOD S. Large-eddy simulations of chevron jet flows with noise predictions[J]. International Journal of Heat and Fluid Flow,2009,30(1): 1067-1079.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  132
  • HTML浏览量:  35
  • PDF量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-25
  • 网络出版日期:  2022-12-21

目录

    /

    返回文章
    返回