留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动压气体止推轴承间隙气动热及流动特性分析

乔湘云 张镜洋 陈卫东 吕元伟 罗欣洋

乔湘云, 张镜洋, 陈卫东, 等. 动压气体止推轴承间隙气动热及流动特性分析[J]. 航空动力学报, 2023, 38(4):860-869 doi: 10.13224/j.cnki.jasp.20210541
引用本文: 乔湘云, 张镜洋, 陈卫东, 等. 动压气体止推轴承间隙气动热及流动特性分析[J]. 航空动力学报, 2023, 38(4):860-869 doi: 10.13224/j.cnki.jasp.20210541
QIAO Xiangyun, ZHANG Jingyang, CHEN Weidong, et al. Analysis of thermo-aerodynamic heat and flow characteristics in clearance of dynamic pressure gas thrust bearing[J]. Journal of Aerospace Power, 2023, 38(4):860-869 doi: 10.13224/j.cnki.jasp.20210541
Citation: QIAO Xiangyun, ZHANG Jingyang, CHEN Weidong, et al. Analysis of thermo-aerodynamic heat and flow characteristics in clearance of dynamic pressure gas thrust bearing[J]. Journal of Aerospace Power, 2023, 38(4):860-869 doi: 10.13224/j.cnki.jasp.20210541

动压气体止推轴承间隙气动热及流动特性分析

doi: 10.13224/j.cnki.jasp.20210541
基金项目: 航空基金(201928052008); 中央高校基本科研业务费专项资金(NT2020021)
详细信息
    作者简介:

    乔湘云(1997-),女,硕士生,主要研究方向为传热与传质

    通讯作者:

    张镜洋(1981-),男,副教授,博士,主要研究方向为传热与传质。E-mail:zjy@nuaa.edu.cn

  • 中图分类号: V229+.2;TH133.37

Analysis of thermo-aerodynamic heat and flow characteristics in clearance of dynamic pressure gas thrust bearing

  • 摘要:

    以波箔型动压气体止推轴承为研究对象,建立变截面气膜间隙润滑模型,研究了有无黏性耗散时动压气体止推轴承间隙压力场及温度场分布,获得几何参数以及转速对轴承间隙气膜压力和温度的影响规律。结果表明:考虑黏性耗散时,在收敛段末端和平直段外缘形成高温区;无黏性耗散时,轴承气膜高温区位于收敛间隙末端;轴承气膜温升随转速线性增加;考虑黏性耗散时,气膜温升随楔形因子的增加而减小,无黏性耗散热时则与之相反;气膜厚度越大,温升越小,厚度对轴承气膜温度分布无影响。本文参数范围内,黏性耗散产生的温升占比达90%。该研究证实了黏性耗散对动压气体止推轴承热流动物理机制有重要的影响,可为动压气体轴承设计和高效运行提供理论基础。

     

  • 图 1  动压气体止推轴承结构

    Figure 1.  Structure of dynamic pressure gas thrust bearing

    图 2  工作流体域边界条件

    Figure 2.  Boundary conditions for the working fluid region

    图 3  气膜间隙内流动示意图

    Figure 3.  Schematic diagram of flow in the gas clearance

    图 4  顶箔侧传热示意图

    Figure 4.  Schematic diagram of heat transfer at the top foil

    图 5  网格划分

    Figure 5.  Mesh generation

    图 6  计算流程图

    Figure 6.  Calculation Flowchart

    图 7  本文承载力计算结果与侯安平等[21]实验结果对比

    Figure 7.  Comparison of bearing capacity numerical calculation results between in this paper and in Hou, et al [21]

    图 8  本文温度计算结果与Liu等[22]实验结果对比

    Figure 8.  Comparison of temperature numerical calculation results between in this paper and in Liu, et al[22]

    图 9  无量纲气膜温度分布

    Figure 9.  Dimensionless gas film temperature distribution with different circumstances

    图 10  无量纲气膜压力分布

    Figure 10.  Dimensionless gas film pressure distribution

    图 11  气体无量纲密度和黏度分布

    Figure 11.  Distribution of gas dimensionless density and viscosity

    图 12  楔形因子对气膜最高无量纲温度和承载力影响

    Figure 12.  Effect of wedge factors on the film maximum dimensionless temperature and load capacity

    图 13  考虑黏性耗散时不同楔形因子条件下无量纲气膜温度分布

    Figure 13.  Dimensionless film temperature distribution on different wedge factors with viscous dissipation

    图 14  考虑压缩温升时不同楔形因子条件下无量纲气膜温度分布

    Figure 14.  Dimensionless film temperature distribution on different wedge factors with compression heat

    图 15  初始最小气膜厚度对气膜最高无量纲温度和承载力的影响

    Figure 15.  Effect of original minimal film thicknesses on the maximum dimensionless film temperature and loadcapacity of the bearings

    图 16  考虑黏性耗散时,不同初始最小气膜厚度条件下无量纲温度分布

    Figure 16.  Dimensionless gas film temperature distribution on different original minimal film thicknesses with viscous dissipation

    图 17  考虑压缩温升时,不同初始最小气膜厚度条件下无量纲温度分布

    Figure 17.  Dimensionless gas film temperature distribution on different original minimal film thicknesses with compression heat

    图 18  转速对气膜最高无量纲温度和承载力的影响

    Figure 18.  Effect of rotational speed on the maximum dimensionless film temperature and load capacity

    图 19  考虑黏性耗散热时,不同转速条件下气膜无量纲温度分布

    Figure 19.  Dimensionless film temperature distribution on different rotational speeds with viscous dissipation

    图 20  考虑压缩温升时,不同转速条件下气膜无量纲温度分布

    Figure 20.  Dimensionless film temperature distribution on different rotational speeds with compression heat

    表  1  计算工况

    Table  1.   Parameters of the calculation operating condition

    参数数值
    初始最小气膜厚度h2/μm8~36
    楔形因子hf=h3/h22~8
    转速n/104 (r/min)2~10
    轴承外半径R2/mm21.5
    轴承内半径R1/mm12
    扇形瓦张角β/(°)60
    节距比b0.5
    箔片数N6
    下载: 导出CSV
  • [1] XU F, KIM D, YAZDI B Z. Theoretical study of top foil sagging effect on the performance of air thrust foil bearing[R]. Seoul, South Korea: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2016.
    [2] HESHMAT H,WALOWIT J A,PINKUS O. Analysis of gas lubricated compliant thrust bearings[J]. Journal of Lubrication Technology,1983,105(4): 638-646. doi: 10.1115/1.3254696
    [3] KIM T H,LEE Y B,KIM T Y,et al. Rotor dynamic performance of an oil-free turbo blower focusing on load capacity of gas foil thrust bearings[J]. Journal of Engineering for Gas Turbines and Power,2012,134(2): 1-7.
    [4] 闫佳佳. 弹性箔片动压气体止推轴承-转子系统动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    YAN Jiajia. Research on dynamic characteristics of compliant foil gas bearing-rotor system[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [5] 李映宏,胡小强,张凯,等. 叠片式气体箔片推力轴承热特性分析[J]. 摩擦学学报,2019,39(3): 295-303. doi: 10.16078/j.tribology.2018193

    LI Yinghong,HU Xiaoqiang,ZHANG Kai,et al. A thermohydrodynamic analysis of laminated gas foil thrust bearing[J]. Journal of Tribology,2019,39(3): 295-303. (in Chinese) doi: 10.16078/j.tribology.2018193
    [6] LEE D,KIM D. Designand performance prediction of hybrid airfoil thrust bearings[J]. Journal of Engineering for Gas Turbines and Power,2015,133(4): 425-426.
    [7] 罗轶欣,张镜洋. 动压气体止推轴承间隙气动热特性分析[J]. 机械制造与自动化,2019,48(5): 39-42, 63. doi: 10.19344/j.cnki.issn1671-5276.2019.05.010

    LUO Yixin,ZHANG Jingyang. Analysis of gas film thermal characteristics of gas thrust bearing[J]. Machine Building and Automation,2019,48(5): 39-42, 63. (in Chinese) doi: 10.19344/j.cnki.issn1671-5276.2019.05.010
    [8] 徐方程,张广辉,孙毅,等. 平箔片楔形高度对气体止推箔片轴承特性影响[J]. 航空动力学报,2016,31(12): 3064-3072. doi: 10.13224/j.cnki.jasp.2016.12.031

    XU Fangcheng,ZHANG Guanghui,SUN Yi,et al. Performance analysis of air foil thrust bearings with different top foil taper heights[J]. Journal of Aerospace Power,2016,31(12): 3064-3072. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.12.031
    [9] SIM K,KIM D. Thermo hydrodynamic analysis of compliant flexure pivot tilting pad gas bearings[J]. Journal of Engineering for Gas Turbines and Power,2008,130(3): 502-513.
    [10] UNTAROIU A. Effect of foil geometry on the static performance of thrust foil bearings[J]. Journal of Engineering for Gas Turbines and Power,2018,140(8): 1-9.
    [11] 冯欣凯,杨利花. 重载下可倾瓦推力轴承的热弹流润滑特性分析[J]. 航空动力学报,2021,36(9): 1861-1870. doi: 10.13224/j.cnki.jasp.20200514

    FENG Xinkai,YANG Lihua. Analysis on thermoelasto -hydrodynamic lubrication characteristics of tilting pad thrust bearings under heavy load[J]. Journal of Aerospace Power,2021,36(9): 1861-1870. (in Chinese) doi: 10.13224/j.cnki.jasp.20200514
    [12] PENG Z C,KHONSARI M M. A thermo hydrodynamic analysis of foil journal bearings[J]. Journal of Tribology,2006,128(3): 534-541. doi: 10.1115/1.2197526
    [13] FENG K, KANEKO S. A Study of thermo hydrodynamic features of multi wound foil bearing using Lobatto point quadrature[R]. ASME Paper GT2008-50110, 2008.
    [14] SALEHI M,HESHMAT H. On the fluid flow and thermal analysis of a compliant surface foil bearing and seal[J]. ASLE(Association for the Study of Literature and Environment) Transactions,2000,43(2): 318-324.
    [15] SALEHI M,SWANSON E,HESHMAT H. Thermal features of compliant foil bearings: theory and experiments[J]. Journal of Tribology,2001,123(3): 18-34.
    [16] NONINO C,GIUDICE S D,SAVINO S. Temperature-dependent viscosity and viscous dissipation effects in microchannel flows with uniform wall heat flux[J]. Heat Transfer Engineering,2010,31(8): 682-691. doi: 10.1080/01457630903466670
    [17] AYDIN O. Effects of viscous dissipation on the heat transfer in forced pipe flow: Part 1 both hydrodynamically and thermally fully developed flow[J]. Energy Conversion and Management,2005,46(5): 757-769. doi: 10.1016/j.enconman.2004.05.004
    [18] AYDIN O. Effects of viscous dissipation on the heat transfer in a forced pipe flow: Part 2 thermally developing flow[J]. Energy Conversion and Management,2005,46(18): 3091-3102.
    [19] RAMADAN KM. Pressure work and viscous dissipation effects on heat transfer in a parallel-plate microchannel gas flow[J]. Journal of Mechanics,2019,35(2): 243-254. doi: 10.1017/jmech.2017.105
    [20] GAD A M, KANEKO S. Fluid flow and thermal features of gas foil thrust bearings at moderate operating temperatures[R]. Milan, Italy: the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science, 2015.
    [21] 侯安平,林蓬成,王锐,等. 气体动压止推轴承性能及实验[J]. 航空动力学报,2018,33(6): 1510-1518. doi: 10.13224/j.cnki.jasp.2018.06.025

    HOU Anping,LIN Pengcheng,WANG Rui,et al. Performance of air-dynamic lubrication thrust bearing and experiment[J]. Journal of Aerospace Power,2018,33(6): 1510-1518. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.06.025
    [22] LIU X,LI C,DU J,et al. Thermal characteristics study of the bump foil thrust bearing[J]. Applied Sciences,2021,11(9): 11-23.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  179
  • HTML浏览量:  40
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-25
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回