留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等离子体激励的湍流边界层减阻控制

郑海波 高超 武斌 李跃强

郑海波, 高超, 武斌, 等. 基于等离子体激励的湍流边界层减阻控制[J]. 航空动力学报, 2023, 38(5):1157-1165 doi: 10.13224/j.cnki.jasp.20210546
引用本文: 郑海波, 高超, 武斌, 等. 基于等离子体激励的湍流边界层减阻控制[J]. 航空动力学报, 2023, 38(5):1157-1165 doi: 10.13224/j.cnki.jasp.20210546
ZHENG Haibo, GAO Chao, WU Bin, et al. Drag reduction control of turbulent boundary layer based on plasma actuation[J]. Journal of Aerospace Power, 2023, 38(5):1157-1165 doi: 10.13224/j.cnki.jasp.20210546
Citation: ZHENG Haibo, GAO Chao, WU Bin, et al. Drag reduction control of turbulent boundary layer based on plasma actuation[J]. Journal of Aerospace Power, 2023, 38(5):1157-1165 doi: 10.13224/j.cnki.jasp.20210546

基于等离子体激励的湍流边界层减阻控制

doi: 10.13224/j.cnki.jasp.20210546
基金项目: 陕西省自然科学基础研究计划2021JQ-082青年项目; 国家自然科学基金(11572256); 中欧绿色航空科技合作DRAGY项目
详细信息
    作者简介:

    郑海波(1996-),男,博士生,主要从事流动控制研究

    通讯作者:

    高超(1960-),男,教授,博士,研究领域为跨声速空气动力学、空气动力学试验与测量、复杂流动控制及应用。E-mail:chaogao2020@163.com

  • 中图分类号: V211.7

Drag reduction control of turbulent boundary layer based on plasma actuation

  • 摘要:

    为了探究介质阻挡放电(dielectric barrier discharge, DBD)等离子体气动激励对平板湍流边界层的减阻情况,在控制来流速度为10.7 m/s的低速风洞中进行等离子体平板湍流边界层减阻控制实验。本实验重点研究了不同激励频率对湍流边界层的减阻控制效果,使用热线风速仪系统采集流向速度信号,获得边界层平均速度分布和脉动速度分布。对实验结果进行对比分析发现,在施加不同频率的等离子体激励之后,边界层内对数区速度明显减小;随着激励频率的增加,局部减阻率呈现出先增大后减小的趋势,在激励频率为200 Hz时,减阻率达到最大为7.4%。

     

  • 图 1  低速风洞[21]

    Figure 1.  Low speed wind tunnel[21]

    图 2  实验原理及测量(单位:mm)

    Figure 2.  Experimental principle and measurement (unit:mm)

    图 3  DBD等离子体激励器

    Figure 3.  DBD plasma actuator

    图 4  热线探针(55P15)

    Figure 4.  Hot wire probe (55P15)

    图 5  DBD等离子体激励器和热线

    Figure 5.  DBD plasma actuators and the hot wire

    图 6  不同脉冲频率下的摩擦速度

    Figure 6.  Friction velocity with different pulsing frequency

    图 7  DBD激励器上游和下游位置处速度分布

    Figure 7.  Velocity distribution of upstream location and downstream location of the DBD actuator

    图 8  无控制状态边界层验证

    Figure 8.  Identification of boundary layers without control

    图 9  不同频率下边界层速度分布

    Figure 9.  Velocity distribution of boundary layers with different frequencies

    图 10  不同频率下边界层验证

    Figure 10.  Identification of boundary layers with different frequency

    图 11  边界层速度分布对比分析

    Figure 11.  Comparative analysis of velocity distribution of boundary layers

    图 12  不同频率下减阻率及摩擦因数变化

    Figure 12.  Variation of drag reduction and friction factor with different frequencies

    图 13  不同频率下流向脉动速度分布

    Figure 13.  Streamwise fluctuation velocity distribution with different pulsing frequencies

    图 14  流向脉动速度概率密度分布(y+=150)

    Figure 14.  Probability density distribution of streamwise fluctuation velocity (y+=150)

    表  1  DBD等离子体激励器几何参数

    Table  1.   Geometric parameters of the DBD plasma actuator

    激励器参数数值
    下电极尺寸(l×l )/(m×m)80×80
    有效放电长度l/mm80
    上电极宽度d/mm2
    电极间距s/mm10
    下电极厚度h1/mm0.2
    介电层厚度h2/mm0.066(y+≈2<5)
    下载: 导出CSV

    表  2  不同频率下边界层相关参数变化

    Table  2.   Parameters variation of boundary layer with different frequencies

    f/Hzuτ/(m/s)τw/PaCfη/%
    00.45180.241890.00352
    300.43520.224440.003315.97
    1000.43410.223300.003296.53
    2000.43220.221350.003267.39
    5000.43640.225680.003335.71
    下载: 导出CSV
  • [1] 刘沛清,张雯,郭昊. 大型运输机的减阻技术[J]. 力学与实践,2018,40(2): 129-139. doi: 10.6052/1000-0879-17-295

    LIU Peiqing,ZHANG Wen,GUO Hao. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering,2018,40(2): 129-139. (in Chinese) doi: 10.6052/1000-0879-17-295
    [2] ABBAS A,BUGEDA G,FERRER E,et al. Drag reduction via turbulent boundary layer flow control[J]. Science China (Technological Sciences),2017,60(9): 1281-1290. doi: 10.1007/s11431-016-9013-6
    [3] KLINE S J,REYNOLDS W C,SCHRAUB F A,et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics,1967,30(4): 741-773. doi: 10.1017/S0022112067001740
    [4] RAO K N,NARASIMHA R,NARAYANAN M A B. The ‘bursting’ phenomenon in a turbulent boundary layer[J]. Journal of Fluid Mechanics,1971,48(2): 339-352. doi: 10.1017/S0022112071001605
    [5] ORLANDI P,JAVIER J. On the generation of turbulent wall friction[J]. Physics of Fluids,1994,6(2): 634-641. doi: 10.1063/1.868303
    [6] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics,1991,23(1): 601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [7] 李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C]// 中国航空学会第6届动力年会论文集. 北京: 中国航空学会动力专业分会, 2006: 790-799.
    [8] 赵小虎,李应红,李益文,等. 介质阻挡放电等离子体气动激励的动量特性[J]. 航空动力学报,2010,25(8): 1791-1798.

    ZHAO Xiaohu,LI Yinghong,LI Yiwen,et al. Momentum characteristic of dielectric barrier discharge plasma aerodynamic actuation[J]. Journal of Aerospace Power,2010,25(8): 1791-1798. (in Chinese)
    [9] 聂万胜,程钰锋,车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展,2012,42(6): 722-734. doi: 10.6052/1000-0992-11-161

    NIE Wansheng,CHENG Yufeng,CHE Xueke. A review on dielectric barrier discharge plasma flow controI[J]. Advances in Mechanics,2012,42(6): 722-734. (in Chinese) doi: 10.6052/1000-0992-11-161
    [10] CORKE T C, ENLOE C L, WILKINSON S P, Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 505-529.
    [11] 吴云,李应红. 等离子体流动控制研究进展与展望[J]. 航空学报,2015,36(2): 381-405.

    WU Yun,LI Yinghong. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2): 381-405. (in Chinese)
    [12] JUKES T,CHOI K S,JOHNSON G A,et al. Characterization of surface plasma-induced wall flows through velocity and temperature measurements[J]. AIAA Journal,2006,44(4): 764-771. doi: 10.2514/1.17321
    [13] JUKES T, CHOI K S, JOHNSON G, et al. Turbulent drag reduction by surface plasma through spanwise flow oscillation[R]. AIAA-2006-3693, 2006.
    [14] WHALLEY R, CHOI K S. Turbulent boundary layer control by DBD plasma: a spanwise travelling wave[R]. AIAA-2010-4840, 2010.
    [15] CHOI K S,JUKES T,WHALLEY R. Turbulent boundary layer control with plasma actuators[J]. Philosophical Transactions of The Royal Society of London A: Mathematical Physical and Engineering Sciences,2011,369(1940): 1443-1458. doi: 10.1098/rsta.2010.0362
    [16] CORKE T C,THOMAS F O. Active and passive turbulent boundary layer drag reduction[J]. AIAA Journal,2018,56(10): 3835-3847. doi: 10.2514/1.J056949
    [17] DUONG A H, CORKE T C, THOMAS F O. Characteristics of drag reduced turbulent boundary layers through pulsed-DC actuation[R]. AIAA-2020-0098, 2020.
    [18] WU B,GAO C,LIU F,et al. Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology,2019,21(4): 111-118.
    [19] WONG C W, CHENG X Q, PENG Q, et al. Effects of plasma-actuator-generated vortices on a turbulent boundary layer[R]. Chicago, US: the 10th International Symposium on Turbulence and Shear Flow Phenomena, 2017.
    [20] CHENG X Q, WONG C W, LI Y Z, et al. Friction drag reduction mechanism under DBD plasma control[C]// Proceedings of the 4th Symposium on Fluid-Structure-Sound Interactions and Control. Singapore City: Springer Nature Singapore, 2019: 105-110.
    [21] 陆连山,李栋,郑杰,等. 基于狭缝合成射流的湍流边界层流动控制实验研究[J]. 航空工程进展,2020,11(5): 618-628.

    LU Lianshan,LI Dong,ZHENG Jie,et al. An experimental study of turbulent boundary layer flow control by synthetic jet through spanwise slot[J]. Advances in Aeronautical Science and Engineering,2020,11(5): 618-628. (in Chinese)
    [22] VILA C S,VINUESA R,DISCETTI A,et al. On the identification of well-behaved turbulent boundary layers[J]. Journal of Fluid Mechanics,2017,822: 109-138. doi: 10.1017/jfm.2017.258
    [23] 许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45: 111-140.

    XU Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 111-140. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  136
  • HTML浏览量:  39
  • PDF量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 网络出版日期:  2023-01-06

目录

    /

    返回文章
    返回