留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空桶燃烧室内连续旋转爆震的稳定性分析

范良忠 郭康康 舒晨 陈朋 聂万胜 林伟

范良忠, 郭康康, 舒晨, 等. 空桶燃烧室内连续旋转爆震的稳定性分析[J]. 航空动力学报, 2023, 38(5):1090-1101 doi: 10.13224/j.cnki.jasp.20210548
引用本文: 范良忠, 郭康康, 舒晨, 等. 空桶燃烧室内连续旋转爆震的稳定性分析[J]. 航空动力学报, 2023, 38(5):1090-1101 doi: 10.13224/j.cnki.jasp.20210548
FAN Liangzhong, GUO Kangkang, SHU Chen, et al. Stability analysis of continuous rotating detonation in hollow combustor[J]. Journal of Aerospace Power, 2023, 38(5):1090-1101 doi: 10.13224/j.cnki.jasp.20210548
Citation: FAN Liangzhong, GUO Kangkang, SHU Chen, et al. Stability analysis of continuous rotating detonation in hollow combustor[J]. Journal of Aerospace Power, 2023, 38(5):1090-1101 doi: 10.13224/j.cnki.jasp.20210548

空桶燃烧室内连续旋转爆震的稳定性分析

doi: 10.13224/j.cnki.jasp.20210548
基金项目: 国家自然科学基金(11902361,51876219)
详细信息
    作者简介:

    范良忠(1996-),男,硕士生,研究领域为连续旋转爆震发动机、液体火箭发动机燃烧不稳定

    通讯作者:

    林伟(1987-)男,副教授、硕士生导师,博士,研究领域为爆震发动机技术、空间推进技术。E-mail:linweiqy@163.com

  • 中图分类号: V231.2

Stability analysis of continuous rotating detonation in hollow combustor

  • 摘要:

    在空桶燃烧室中开展了不同流量下(142.7~493.9 g/s)的连续旋转爆震试验。流量为493.9 g/s时,爆震波的传播速度接近Chapman-Jouguet(CJ)理论参考值。随着流量的减小,爆震波的传播速度和压力逐渐降低。当流量降至142.7 g/s,爆震波演化为双波模态,并伴有熄灭-再起爆现象。而且,爆震波的压力和速度周期性波动,平均传播速度仅为76.8%的CJ爆震速度。随后,采用非线性时间序列分析法讨论了不同工况下爆震波的稳定性。结果表明:流量大于300 g/s时,燃烧室的高频压力序列在相空间中的吸引子收敛为极限环模式。减小流量后导致吸引子趋于混乱,表明爆震传播稳定性降低,系统趋于无序状态。该研究讨论了流量对爆震波稳定性的影响,并探索了非线性时间序列分析在旋转爆震稳定性研究中的应用,为复杂工况下爆震波稳定性判断提供了方法参考。

     

  • 图 1  试验装置示意图

    Figure 1.  Schematic diagram of the experiment apparatus

    图 2  平均速度和平均压力随流量的变化

    Figure 2.  Average velocity and pressure vary with mass flow

    图 3  工况1~工况5中高频压力和爆震速度轨迹

    Figure 3.  History of the high-frequency pressures and detonation velocities of case 1−case 5

    图 4  工况1中爆震波的速度及压力曲线

    Figure 4.  Speed and pressure curve of detonation wave in case 1

    图 5  工况1中不稳定爆震传播过程

    Figure 5.  Unstable rotating detonation propagation in case 1

    图 6  不同延迟时间的吸引子轨迹

    Figure 6.  Attractor trajectories with different delay times

    图 7  平均虚假临近点法的估计结果

    Figure 7.  AFN estimated result

    图 8  高频压力信号的二维相位图

    Figure 8.  Two-dimensional phase portrait of high frequency signal.

    图 9  关于爆震波压力的二维相位图(工况1)

    Figure 9.  Two-dimensional phase portrait of detonation waves’ pressure (case 1)

    图 10  关于爆震波压力的二维相位图(工况2 ~工况5)

    Figure 10.  Two-dimensional phase portrait of detonation waves’ pressure for case 2−case 5

    表  1  设计条件和统计参数

    Table  1.   Design conditions and statistical parameters

    工况编号$ \dot{m} $/(g/s)波数$ {f}_{\text{FFT}} $/kHz$ {V}_{\text{FFT}} $/(m/s)$ \overline{V} $/(m/s)$ {S}_{V} $$ \overline{p} $/MPa$ {S}_{p} $($ \overline{V}/{V}_{\text{CJ}} $)/%
    1142.7双波9.771535.31482.187.160.2460.13276.8
    2188.1单波4.981563.31565.924.500.3350.12081.1
    3300.3单波5.671781.31784.615.730.9230.10492.4
    4384.8单波5.991880.81874.515.631.1380.16397.1
    5493.9单波6.141929.41932.611.341.5970.198100.1
    下载: 导出CSV
  • [1] WOLANSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute,2013,34(1): 125-158. doi: 10.1016/j.proci.2012.10.005
    [2] MA J Z,LUAN M Y,XIA Z J,et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal,2020,58(12): 4976-5035. doi: 10.2514/1.J058157
    [3] 马虎,张义宁,杨成龙,等. 燃料分布对旋转爆震波传播特性影响[J]. 航空动力学报,2019,34(3): 513-520.

    MA Hu,ZHANG Yining,YANG Chenglong,et al. Effects of fuel distribution on propagation of rotating detonation wave[J]. Journal of Aerospace Power,2019,34(3): 513-520. (in Chinese)
    [4] 王超,刘卫东,刘世杰,等. 连续旋转爆震波的瞬时传播特性[J]. 航空动力学报,2015,30(11): 2600-2606.

    WANG Chao,LIU Weidong,LIU Shijie,et al. Instantaneous propagation characteristics of continuous rotating detonation wave[J]. Journal of Aerospace Power,2015,30(11): 2600-2606. (in Chinese)
    [5] 孙健,周进,林志勇,等. 燃烧室轴向长度对旋转爆震发动机性能的影响[J]. 航空动力学报,2016,31(9): 2080-2086.

    SUN Jian,ZHOU Jin,LIN Zhiyong,et al. Influence of chamber length on rotating detonation engine performance[J]. Journal of Aerospace Power,2016,31(9): 2080-2086. (in Chinese)
    [6] ANAND V,GEORGE A S,LUZAN C F D,et al. Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities[J]. Experimental Thermal and Fluid Science,2018,92: 314-325. doi: 10.1016/j.expthermflusci.2017.12.004
    [7] ANAND V,GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities[J]. Progress in Energy and Combustion Science,2019,73: 182-234.
    [8] YAO S,WANG J. Multiple ignitions and the stability of rotating detonation waves[J]. Applied Thermal Engineering,2016,108: 927-936. doi: 10.1016/j.applthermaleng.2016.07.166
    [9] YUAN X,ZHOU J,LIU S,et al. Diffraction of cellular detonation wave over a cylindrical convex wall[J]. Acta Astronautica,2019,169: 94-107.
    [10] NAKAYAMA H, MORIYA T, KASAHARA J, et al. Front shock behavior of stable detonation waves propagating through rectangular cross-section curved channels[R]. Nashville, US: AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012.
    [11] SHORT M,CHIQUETE C,QUIRK J J. Propagation of a stable gaseous detonation in a circular arc configuration[J]. Proceedings of the Combustion Institute,2019,37(3): 3593-3600. doi: 10.1016/j.proci.2018.06.212
    [12] ZHANG B,LIU H,YAN B. Velocity behavior downstream of perforated plates with large blockage ratio for unstable and stable detonations[J]. Aerospace Science and Technology,2019,86: 236-243.
    [13] NAKAYAMA H,MORIYA T,KASAKARA J,et al. Stable detonation wave propagation in rectangular-cross-section curved channels[J]. Combustion and Flame,2012,159(2): 859-869. doi: 10.1016/j.combustflame.2011.07.022
    [14] LIN W,ZHOU J,LIU S,et al. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber[J]. Experimental Thermal and Fluid Science,2015,62: 122-130. doi: 10.1016/j.expthermflusci.2014.11.017
    [15] LIN W,ZHOU J,LIU S,et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy,2015,40(4): 1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
    [16] GOTODA H,SHINODA Y,KOBAYASHI M,et al. Detection and control of combustion instability based on the concept of dynamical system theory[J]. Physical Review: E Statistical, Nonlinear, and Soft Matter Physics,2014,89(2): 022910.1-022910.8.
    [17] LIEUWEN T C. Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor[J]. Journal of Propulsion and Power,2002,18(1): 61-67. doi: 10.2514/2.5898
    [18] FICHERA A,LOSENMO C,PAGANO A. Experimental analysis of thermo-acoustic combustion instability[J]. Applied Energy,2001,70(2): 179-191. doi: 10.1016/S0306-2619(01)00020-4
    [19] 葛逸飞,李森,魏小林. 利用相空间重构方法分析层流扩散火焰燃烧不稳定现象[J]. 工程热物理学报,2020,41(6): 1550-1555.

    GE Yifei,LI Sen,WEI Xiaolin. An analysis of laminar co-flow diffusion flame instability based on phase space reconstruction method[J]. Journal of Engineering Thermophysics,2020,41(6): 1550-1555. (in Chinese)
    [20] NG H D. The effect of chemical reaction kinetics on the structure of gaseous detonations[D]. Montreal, Canada: McGill University, 2005.
    [21] NG H D,HIGGINS A J,KIYANDA C B,et al. Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations[J]. Combustion Theory and Modelling,2005,9(1): 159-170. doi: 10.1080/13647830500098357
    [22] HE W,XIE Q,JI Z,et al. Characterizing continuously rotating detonation via nonlinear time series analysis[J]. Proceedings of the Combustion Institute,2019,37(3): 3433-3442. doi: 10.1016/j.proci.2018.07.045
    [23] 张海龙. 液体火箭发动机切向不稳定燃烧的旋转爆震机理研究[D]. 长沙: 国防科学技术大学, 2017.

    ZHANG Hailong. The rotating detonation mechanism of tangential combustion instability in a liquid rocket engine[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
    [24] XIE Q F,WEN H C,LI W H,et al. Analysis of operating diagram for H2-Air rotating detonation combustors under lean fuel condition[J]. Energy,2018,151: 408-419.
    [25] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究 [D]. 国防科学技术大学, 2012.

    LIU Shijie. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
    [26] LIN W,TONG Y,LIN Z,et al. Propagation mode analysis on H2-air rotating detonation waves in a hollow combustor[J]. AIAA Journal,2020,58(12): 5052-5062. doi: 10.2514/1.J058254
    [27] LEE J H S. The detonation phenomenon[M]. Cambridge, UK: Cambridge University Press, 2008.
    [28] TAKENS F. Detecting strange attractors in turbulence[M]. Berlin, Germany: Springer, 1980.
    [29] PACKARD N H,CRUTCHFIELD J P,SHAW R S. Geometry from a time series[J]. Physical Review Letters,2008,45(9): 712-716.
    [30] BROOMHEAD D S,KING G P. Extracting qualitative dynamics from experimental data[J]. Physica: D Nonlinear Phenomena,1986,20(2/3): 217-236.
    [31] CASDAGLI M,EUBANK S,FARMER J D,et al. State space reconstruction in the presence of noise[J]. Physica: D Nonlinear Phenomena,1993,51(1/2/3): 52-98.
    [32] KANTZ H, SCHREIBER T. Nonlinear time series analysis[M]. Cambridge, UK: Cambridge University Press, 2004.
    [33] ROSENSTEIN M T,COLLINS J J,LUCA C J D. Reconstruction expansion as a geometry-based framework for choosing proper delay times[J]. Physica: D Nonlinear Phenomena,1994,73(1/2): 82-98.
    [34] FRASER A M,SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review: A,1986,33(2): 1134-1140. doi: 10.1103/PhysRevA.33.1134
    [35] MANNATTIL M,GUPTA H,CHAKRABORTY S. Revisiting evidence of chaos in x-ray light curves: the case of GRS 1915+105[J]. Astrophysical Journal,2016,833(2): 208-222. doi: 10.3847/1538-4357/833/2/208
    [36] MANNATTILA M,PANDEY A,VERMA M K,et al. On the applicability of low-dimensional models for convective flow reversals at extreme Prandtl numbers[J]. The European Physical Journal:B,2017,90(12): 259. doi: 10.1140/epjb/e2017-80391-1
    [37] ALBANO A M,MUENCH J,SCHWARTZ C,et al. Singular-value decomposition and the Grassberger-Procaccia algorithm[J]. Physical Review: A,1988,38(6): 3017-3026. doi: 10.1103/PhysRevA.38.3017
    [38] KUGIUMTZIS D. State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length[J]. Physica: D Nonlinear Phenomena,1996,95(1): 13-28. doi: 10.1016/0167-2789(96)00054-1
    [39] KENNEL M B,BROWN R,ABARBANEL H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review: A,1992,45(6): 3403-3411. doi: 10.1103/PhysRevA.45.3403
    [40] CAO L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica: D Nonlinear Phenomena,1997,110(1/2): 43-50.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  115
  • HTML浏览量:  33
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 网络出版日期:  2023-02-03

目录

    /

    返回文章
    返回