留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

STOVL推进系统模式转换过程建模及分析

江天牧 张晓博 王占学

江天牧, 张晓博, 王占学. STOVL推进系统模式转换过程建模及分析[J]. 航空动力学报, 2023, 38(6):1403-1413 doi: 10.13224/j.cnki.jasp.20210551
引用本文: 江天牧, 张晓博, 王占学. STOVL推进系统模式转换过程建模及分析[J]. 航空动力学报, 2023, 38(6):1403-1413 doi: 10.13224/j.cnki.jasp.20210551
JIANG Tianmu, ZHANG Xiaobo, WANG Zhanxue. Modeling and analysis of mode conversion process for STOVL propulsion system[J]. Journal of Aerospace Power, 2023, 38(6):1403-1413 doi: 10.13224/j.cnki.jasp.20210551
Citation: JIANG Tianmu, ZHANG Xiaobo, WANG Zhanxue. Modeling and analysis of mode conversion process for STOVL propulsion system[J]. Journal of Aerospace Power, 2023, 38(6):1403-1413 doi: 10.13224/j.cnki.jasp.20210551

STOVL推进系统模式转换过程建模及分析

doi: 10.13224/j.cnki.jasp.20210551
基金项目: 国家自然科学基金(52076180); 国家科技重大专项(J2019-Ⅰ-0021-0020)
详细信息
    作者简介:

    江天牧(1996-),男,博士生,主要从事航空发动机总体性能仿真与设计研究

  • 中图分类号: V235.3

Modeling and analysis of mode conversion process for STOVL propulsion system

  • 摘要:

    在通过对离合器组件的动力学分析建立离合器动态性能计算模型的基础上,根据短距起飞/垂直降落(STOVL)推进系统各部件在不同工作状态下的耦合关系,建立了STOVL推进系统模式转换过程的共同工作方程组,即其动态性能仿真模型,并提出了STOVL推进系统短垂模式与常规模式相互转换的控制策略,对比了不同离合器接合速度下模式转换过程中的性能参数特点。结果表明:建立的仿真模型在模式转换过程中与国外文献数据相比最大误差为3.76%;提出的控制策略可保证模式转换过程中STOVL推进系统无超温、超转现象,且喘振裕度变化在0.1%以内;模式转换过程中离合器接合时间越短,其瞬时摩擦产热量越大,但总产热量越小。

     

  • 图 1  传动离合系统示意图

    Figure 1.  Schematic diagram of transmission and clutch system

    图 2  STOVL推进系统仿真模型

    Figure 2.  Simulation model of STOVL propulsion system

    图 3  模式转换过程动态性能计算流程图

    Figure 3.  Flow chart of dynamic performance calculation during mode conversion

    图 4  升力风扇接合、脱离过程模拟结果与文献[23]数据对比

    Figure 4.  Comparison of lift-fan engagement and disengagement simulation results with Ref.[23] data

    图 5  短垂模式转换至常规模式过程参数调节规律

    Figure 5.  Control schedules during the conversion from STOVL mode to conventional mode

    图 6  短垂模式转换至常规模式过程中推进系统性能参数

    Figure 6.  Performance parameters of propulsion system during the conversion from STOVL mode to conventional mode

    图 7  常规模式转换至短垂模式过程参数调节规律

    Figure 7.  Control schedules during the conversion from conventional mode to STOVL mode

    图 8  常规模式转换至短垂模式过程中推进系统性能参数

    Figure 8.  Performance parameters of propulsion system during the conversion from conventional mode to STOVL mode

    图 9  不同接合速度下离合器力矩、摩擦耗散功率及产热量对比

    Figure 9.  Comparison of clutch torque, friction dissipation power and heat generation at different engagement speeds

    表  1  STOVL推进系统平衡方程

    Table  1.   Equilibrium equations of STOVL propulsion system

    序号离合器状态
    滑动状态锁定状态
    1${q_{m,{\text{fan,in}}}} = {q_{m{\text{,fan,map}}}}$
    2${q_{m,{\text{com,in} } } } = {q_{m,{\text{com,map} } } }$
    3${q_{m,{\text{HPT,in} } } } = {q_{m,{\text{HPT,map} } } }$
    4${q_{m,{\text{LPT,in} } } } = {q_{m,{\text{LPT,map} } } }$
    5${p_{{\text{s,mixinner}}}} = {p_{{\text{s,mixouter}}}}$
    6${q_{m,{\text{nozz,in}}}} = {q_{m{\text{,nozz,cap}}}}$
    7${M_{ {\text{HPT} } } } = {M_{ {\text{com} } } } + {J_{ {\text{hp} } } }\dfrac{ { {\text{d} }{\omega _{ {\text{hp} } } } } }{ { {\text{d} }t} }$
    8${M_{ {\text{LPT} } } } = {M_{ {\text{fan} } } } + {M_{ {\text{cl} } } } + {J_{ {\text{lp} } } }\dfrac{ { {\text{d} }{\omega _{ {\text{lp} } } } } }{ { {\text{d} }t} }$
    9${q_{m{\text{,rollnozz,in}}}} = {q_{m,{\text{rollnozz,cap}}}}$
    10${q_{m{\text{,lf,in}}}} = {q_{m{\text{,lf,map}}}}$
    11${q_{m,{\text{lfnozz,in}}}} = {q_{m,{\text{lfnozz,cap}}}}$
    12${M_{ {\text{cl} } } } = {M_{ {\text{lf} } } } + {J_{ {\text{lf} } } }\dfrac{ { {\text{d} }{\omega _{ {\text{lf} } } } } }{ { {\text{d} }t} }$
    下载: 导出CSV

    表  2  短垂模式地面静止工作点性能参数

    Table  2.   Performance parameters of ground static operating point in STOVL mode

    参数仿真结果文献[18]数据
    涡轮前温度/K2197.72200
    涵道比0.6450.645
    巡航发动机推力/kN78.178.1
    升力风扇推力/kN81.581.1
    滚转喷管推力/kN18.117.9
    下载: 导出CSV

    表  3  常规模式高空巡航工作点性能参数

    Table  3.   Performance parameters of high altitude cruising point in conventional mode

    参数仿真结果文献[18]数据
    涡轮前温度/K2198.72200
    涵道比0.550.55
    净推力/kN64.565.0
    下载: 导出CSV
  • [1] 郭捷,杨琳,郑宁,等. 短距/垂直起落战斗机升力风扇关键技术的探讨[J]. 航空科学技术,2008,20(2): 30-35.

    GUO Jie,YANG Lin,ZHENG Ning,et al. Investigation of critical technology for lift fan[J]. Aeronautical Science and Technology,2008,20(2): 30-35. (in Chinese)
    [2] 朱大明. F-35B/F135一体化控制系统[J]. 国际航空,2014,59(1): 66-68.

    ZHU Daming. Integration control system of F-35B/F135[J]. International Aviation,2014,59(1): 66-68. (in Chinese)
    [3] BEVILAQUA P. Inventing the F-35 joint strike fighter[R]. AIAA-2009-1650, 2009.
    [4] MADDOCK I, HIRSCHBERG M, HIRSCHBERG M, et al. The quest for stable jet borne vertical lift: ASTOVL to F-35 STOVL[R]. AIAA-2011-6999, 2011.
    [5] BEVILAQUA P. Future application of the JSF variable cycle[R]. AIAA-2003-2614, 2003.
    [6] GOEBEL J E. Design of a lift fan engine for a heavy lift aircraft[D]. Monterey, US: Naval Postgraduate School, 2003.
    [7] WIEGAND C. F-35 air vehicle technology overview[R]. AIAA-2018-3368, 2018.
    [8] WALKER G, ALLEN D. X-35B STOVL flight control law design and flying qualities[R]. AIAA-2002-6018, 2002.
    [9] 梁春华. F135发动机的升力风扇联轴器[J]. 航空发动机,2004,30(1): 39.

    LIANG Chunhua. Lift fan coupling of F135 engine[J]. Aeroengine,2004,30(1): 39. (in Chinese)
    [10] 郭健. 短距起飞/垂直降落战斗机发展及关键技术分析[J]. 飞机设计,2016,36(5): 19-28.

    GUO Jian. Analysis of development and key technique for short take off and vertical landing fighter[J]. Aircraft Design,2016,36(5): 19-28. (in Chinese)
    [11] COX C F. F-35B auxiliary air inlet analysis and design maturation[R]. AIAA-2013-0218, 2013.
    [12] WURTH S P. F-35 propulsion system integration, development and verification[R]. AIAA-2018-3517, 2018.
    [13] WALKER G P, FULLER J W, WURTH S P. F-35B integrated flight-propulsion control development[R]. AIAA-2013-4243, 2013.
    [14] BEVILAQUA P M. Joint strike fighter dual-cycle propulsion system[J]. Journal of propulsion and power,2005,21(5): 778-783. doi: 10.2514/1.15228
    [15] BEVILAQUA P M. The shaft driven lift fan propulsion system for the joint strike fighter[R]. Virginia Beach, US: American Helicopter Society Annual, 1997.
    [16] 刘帅,王占学,蔡元虎,等. 升力风扇和涡扇发动机组合动力系统性能模拟与分析[J]. 航空动力学报,2013,28(5): 1095-1100.

    LIU Shuai,WANG Zhanxue,CAI Yuanhu,et al. Simulation and analysis of performance for combination of lift fan and turbofan engine power system[J]. Journal of Aerospace Power,2013,28(5): 1095-1100. (in Chinese)
    [17] ARNULFO L,PILIDIS P,YIN J,et al. Remote lift-fan engines[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2001,215(3): 155-163. doi: 10.1243/0954410011533149
    [18] VARELIS A. Variable cycle engine for combat STOVL aircraft[D]. Bedfordshire, UK: Cranfield University, 2007.
    [19] 任冰涛,李秋红,亢岚,等. 短距起飞/垂直降落发动机建模技术研究[J]. 航空动力学报,2015,30(10): 2531-2538.

    REN Bingtao,LI Qiuhong,KANG Lan,et al. Research of short take off and vertical landing engine modeling techniques[J]. Journal of Aerospace Power,2015,30(10): 2531-2538. (in Chinese)
    [20] 符大伟,张海波. 带升力风扇的垂直起降推进系统建模研究[J]. 推进技术,2018,39(3): 685-694.

    FU Dawei,ZHANG Haibo. Modeling of a STOVL propulsion system with a lift fan[J]. Journal of Propulsion Technology,2018,39(3): 685-694. (in Chinese)
    [21] 袁长龙,李瑞军,顾嫄媛,等. 基于常规发动机发展STOVL推进系统的总体性能方案[J]. 燃气涡轮试验与研究,2019,32(2): 7-11,6.

    YUAN Changlong,LI Ruijun,GU Yuanhui,et al. General performance scheme of developing STOVL aircraft propulsion system based on conventional turbofan engine[J]. Gas Turbine Experiment and Research,2019,32(2): 7-11,6. (in Chinese)
    [22] 张海明,骆广琦,孟龙,等. STOVL型战斗机变循环发动机性能数值模拟[J]. 空军工程大学学报(自然科学版),2011,12(6): 13-17.

    ZHANG Haiming,LUO Guangqi,MENG Long,et al. Numerical simulation on performance of a variable cycle engine for STOVL fighter[J]. Journal of Air Force Engineering University (Natural Science Edition),2011,12(6): 13-17. (in Chinese)
    [23] VISSER W P, BROOMHEAD M J. GSP a generic object-oriented gas turbine simulation environment[R]. ASME Paper 2000-GT-0002, 2000.
    [24] 张晓博,王占学,蔡元虎. 面向对象的航空发动机性能仿真系统研究[J]. 机械设计与制造,2010,48(11): 133-135.

    ZHANG Xiaobo,WANG Zhanxue,CAI Yuanhu. A study of object-oriented aero-engine performance simulation system[J]. Machinery Design and Manufacture,2010,48(11): 133-135. (in Chinese)
    [25] WALSH P P, FLETCHER P. Gas turbine performance[M]. Hoboken, US: John Wiley and Sons, 2004.
    [26] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  204
  • HTML浏览量:  43
  • PDF量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 网络出版日期:  2023-03-01

目录

    /

    返回文章
    返回