留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体射流在不均匀速度横流中的轨迹和穿透研究

王航 孔祥壮 郭志辉

王航, 孔祥壮, 郭志辉. 液体射流在不均匀速度横流中的轨迹和穿透研究[J]. 航空动力学报, 2023, 38(6):1316-1327 doi: 10.13224/j.cnki.jasp.20210552
引用本文: 王航, 孔祥壮, 郭志辉. 液体射流在不均匀速度横流中的轨迹和穿透研究[J]. 航空动力学报, 2023, 38(6):1316-1327 doi: 10.13224/j.cnki.jasp.20210552
WANG Hang, KONG Xiangzhuang, GUO Zhihui. Investigation on trajectory and penetration of liquid jet in non-uniform velocity crossflow[J]. Journal of Aerospace Power, 2023, 38(6):1316-1327 doi: 10.13224/j.cnki.jasp.20210552
Citation: WANG Hang, KONG Xiangzhuang, GUO Zhihui. Investigation on trajectory and penetration of liquid jet in non-uniform velocity crossflow[J]. Journal of Aerospace Power, 2023, 38(6):1316-1327 doi: 10.13224/j.cnki.jasp.20210552

液体射流在不均匀速度横流中的轨迹和穿透研究

doi: 10.13224/j.cnki.jasp.20210552
基金项目: 国家科技重大专项(2017-Ⅲ-0008-0034)
详细信息
    作者简介:

    王航(1995-),男,硕士生,研究领域为燃油雾化与燃烧室设计。E-mail:287474795@qq.com

  • 中图分类号: V231.2

Investigation on trajectory and penetration of liquid jet in non-uniform velocity crossflow

  • 摘要:

    实验研究了横流速度分布不均匀时液体射流的轨迹和穿透。利用多孔板实现速度分布不均匀,射流液体为水,用激光片光照相结合相位多普勒粒子分析仪进行研究。主要关注平均射流动量比、局部韦伯数和横流速度分布不均匀度等参数。不均匀横流对射流的影响主要体现为破碎模式沿射流流向的转变。提出表征射流受横流影响范围的无量纲数L,并构造常温常压下适用于不均匀度为−2~2且射流动量比为10~40的射流轨迹经验公式。以是否存在“初级抬升段”作为判定是否进行分段拟合的准则。对于不均匀度小于1,结合经验公式与不均匀度和L的线性函数图对射流轨迹进行预测;对于不均匀度大于1,以射流首次发展为复合式破碎的位置作为“抬升段”和“偏转段”的分界点对射流轨迹进行分段拟合。

     

  • 图 1  实验系统图

    Figure 1.  Experimental system diagram

    图 2  坐标轴设置

    Figure 2.  Coordinate axis setting

    图 3  X=0 mm时X方向的空气速度分布

    Figure 3.  Velocity distribution of air in X direction at X=0 mm

    图 4  ε=−2至ε=2(从右至左)的喷雾图像(q20)

    Figure 4.  ε=−2 to ε=2 (from right to left) spray image (q20)

    图 5  3种不同速度分布的喷雾图像

    Figure 5.  Spray images of three different velocity distributions

    图 6  3种不同速度分布的喷雾通量和射流轨迹

    Figure 6.  Spray fluxes and jet trajectory of three different velocity distributions

    图 7  4种工况的ε=0射流轨迹和经验公式曲线

    Figure 7.  Jet trajectory at ε=0 and empirical formula curve under four operating conditions

    图 8  ε=−1.5射流轨迹和不同L对应的经验公式曲线(q30)

    Figure 8.  Jet trajectory at ε=−1.5 and empirical formula curve corresponding to different L (q30)

    图 9  4种工况的ε=−1.5射流轨迹和L=41.7时的经验公式曲线

    Figure 9.  Jet trajectory at ε=−1.5 and empirical formula curve with L=41.7 under four operating conditions

    图 10  ε=−0.8和ε=−2射流轨迹和不同L对应的经验公式曲线(q20、q40)

    Figure 10.  Jet trajectory at ε=−0.8 and ε=−2 and the empirical formula curves corresponding to different L(q20,q40)

    图 11  ε=1.5射流轨迹和不同“抬升和平移”对应的经验公式曲线(q30)

    Figure 11.  Jet trajectory at ε=1.5 and empirical formula curve corresponding to different values of “uplift and translation”(q30)

    图 12  4种工况ε=1.5的“抬升段”和“偏转段”射流轨迹和经验公式曲线

    Figure 12.  Jet trajectory at ε=1.5 and empirical formula curve of “uplift section” and “deflection section” under four operating conditions

    图 13  ε=2射流轨迹和分段经验公式曲线(q20、q30)

    Figure 13.  Jet trajectory at ε=2 and piecewise empirical formula curve (q20,q30)

    图 14  ε=0.8射流轨迹和经验公式曲线(q20、q30)

    Figure 14.  Jet trajectory at ε=0.8 and empirical formula curve (q20,q30)

    图 15  ε=−2到ε=0.8的不均匀度和L之间的关系图

    Figure 15.  Relationship between the relative gradient of ε=−2 to ε=0.8 and L

    表  1  实验工况

    Table  1.   Experimental operating conditions

    工况代号$\overline {U}_{\mathrm{g} }$/(m/s)Uj/(m/s)$\overline{q}$
    q10709.0110.1
    q207012.7520
    q307015.6130.1
    q407018.0340.1
    下载: 导出CSV
  • [1] AALBURG C,LEER B V,FAETH G M,et al. Properties of nonturbulent round liquid jets in uniform gaseous cross flows[J]. Atomization and Sprays,2005,15(3): 271-294. doi: 10.1615/AtomizSpr.v15.i3.20
    [2] BECKER J,HASSA C. Breakup and atomization of a kerosene jet in crossflow at elevated pressure[J]. Atomization and Sprays,2002,12(2002): 49-68.
    [3] INAMURA T. Disintegration phenomena of metalized slurry fuel jets in high speed air stream[C]//Proceedings of the 5th International Conference on Liquid Atomization and Spray Systems. Baltimore, US: International Atomic Energy Agency, 1991: 839-846.
    [4] LEFEBVRE A H, WHITELAW J H. Gas turbine combustion[M]. Washington, US: Hemisphere, 1983.
    [5] TAMBE S. Liquid jets in subsonic crossflow[R]. Reno, US: the 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
    [6] TAMBE S. Liquid jets in subsonic crossflow[D]. Cincinnati, US: University of Cincinnati, 2004.
    [7] BROUMAND M,BIROUK M. Liquid jet in a subsonic gaseous crossflow: recent progress and remaining challenges[J]. Progress in Energy and Combustion Science,2016,57(11): 1-29.
    [8] WU P K,KIRKENDALL K A,FULLER R P,et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power,1997,13(1): 64-73. doi: 10.2514/2.5151
    [9] BIROUK M,AZZOPARDI B,STBLER T. Primary break-up of a viscous liquid jet in a cross airflow[J]. Particle and Particle Systems Characterization,2003,20(4): 283-289. doi: 10.1002/ppsc.200390034
    [10] WANG M,BROUMAND M,BIROUK M. Liquid jet trajectory in a subsonic gaseous cross-flow: an analysis of published correlations[J]. Atomization and Sprays,2016,26(11): 1083-1110. doi: 10.1615/AtomizSpr.2016013485
    [11] BIROUK M,BROUMAND M. A model for predicting the trajectory of a liquid jet in a subsonic gaseous crossflow[J]. Atomization and Sprays,2015,25(10): 871-893. doi: 10.1615/AtomizSpr.2015011881
    [12] AHN K,KIM J,YOON Y. Effects of orifice internal flow on transverse injection into subsonic crossflows: cavitation and hydraulic flip[J]. Atomization and Sprays,2006,16(1): 15-34. doi: 10.1615/AtomizSpr.v16.i1.20
    [13] BIROUK M,IYOGUN C,POPPLEWELL N. Role of viscosity on trajectory of liquid jets in a cross-airflow[J]. Atomization and Sprays,2007,17(3): 267-287. doi: 10.1615/AtomizSpr.v17.i3.30
    [14] NG C,SANKARAKRISHNAN R,SALLAM K. Bag breakup of nonturbulent liquid jets in crossflow[J]. International Journal of Multiphase Flow,2007,34(3): 241-259.
    [15] FARVARDIN E,JOHNSON M,ALAEE H,et al. Comparative study of biodiesel and diesel jets in gaseous crossflow[J]. Journal of Propulsion and Power,2013,29(6): 1292-1302. doi: 10.2514/1.B34743
    [16] ESLAMIAN M,AMIGHI A,ASHGRIZ N. Atomization of liquid jet in high-pressure and high-temperature subsonic crossflow[J]. AIAA Journal,2014,52(7): 1374-1385. doi: 10.2514/1.J052548
    [17] STENZLER J N,LEE J G,SANTAVICCA D A,et al. Penetration of liquid jets in a crossflow[J]. Atomization and Sprays,2013,16(8): 887-906.
    [18] AMIGHI A, ASHGRIZ N. Trajectory of a liquid jet in a high temperature and pressure gaseous cross flow[EB/OL]. [2021-06-01]. https://asmedigitalcollection.asme.org/gasturbinespower/article-abstract/141/6/061019/368354.
    [19] PATIL S, SAHU S. Liquid jet core characterization in a model crossflow airblast atomizer[EB/OL]. [2021-06-19]. https://linkinghub.elsevier.com/retrieve/pii/S0301932221001361.
    [20] JENG S M, TAMBE S, ELSHAMY O M. Liquid jets injected transversely into a shear layer[R]. Reno, US: the 45th AIAA Aerospace Science Meeting and Exhibit, 2007.
    [21] JENG S M, TAMBE S, ELSHAMY O M. Spray properties of liquid jets injected transversely into a shear layer[R]. Cincinnati, US: the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2007.
    [22] HAMILTON L. 应用STATA做统计分析[M]. 郭志刚, 译. 重庆: 重庆大学出版社, 2008.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  168
  • HTML浏览量:  56
  • PDF量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 网络出版日期:  2023-04-02

目录

    /

    返回文章
    返回