留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空燃油闪点对油箱可燃性暴露时间的影响

刘冠男 冯诗愚 王立群 潘江丽 范菊莉

刘冠男, 冯诗愚, 王立群, 等. 航空燃油闪点对油箱可燃性暴露时间的影响[J]. 航空动力学报, 2023, 38(8):1995-2000 doi: 10.13224/j.cnki.jasp.20210554
引用本文: 刘冠男, 冯诗愚, 王立群, 等. 航空燃油闪点对油箱可燃性暴露时间的影响[J]. 航空动力学报, 2023, 38(8):1995-2000 doi: 10.13224/j.cnki.jasp.20210554
LIU Guannan, FENG Shiyu, WANG Liqun, et al. Influence of aviation fuel flash point on fuel tank flammability exposure time[J]. Journal of Aerospace Power, 2023, 38(8):1995-2000 doi: 10.13224/j.cnki.jasp.20210554
Citation: LIU Guannan, FENG Shiyu, WANG Liqun, et al. Influence of aviation fuel flash point on fuel tank flammability exposure time[J]. Journal of Aerospace Power, 2023, 38(8):1995-2000 doi: 10.13224/j.cnki.jasp.20210554

航空燃油闪点对油箱可燃性暴露时间的影响

doi: 10.13224/j.cnki.jasp.20210554
基金项目: 国家自然科学基金委员会-中国民用航空局民航联合研究基金(U1933121); 中央高校基本科研业务费专项资金;江苏高校优势学科建设工程;南京航空航天大学研究生科研与实践创新计划项目(xcxjh20210108)
详细信息
    作者简介:

    刘冠男(1998- ),女,硕士生,主要从事油箱惰性化和飞机燃油系统方面的研究

    通讯作者:

    范菊莉(1981- ),女,副教授、硕士生导师,博士,主要从事飞机燃油系统方面的研究。E-mail:fjl@nuaa.edu.cn

  • 中图分类号: V228;TQ021.4

Influence of aviation fuel flash point on fuel tank flammability exposure time

  • 摘要:

    基于国产民用飞机适航符合性评估需要,简要总结了FAA修订FAR25.981适航规章发展变迁,收集了国内外不同燃油海平面闪点数据,通过蒙特卡洛可燃性暴露分析程序,得到了闪点平均值和标准差变化对油箱可燃暴露率的影响。结果表明:闪点平均温度值越大,标准差范围越宽,油箱可燃性暴露率也越大,在相同条件下,飞机使用RP-3燃油的可燃性暴露率高于Jet A燃油,因此在我国飞机在适航审定过程中应当充分考虑燃油差异对可燃性的影响,完善适合我国国情的适航审定标准和规范。

     

  • 图 1  蒙特卡洛分析程序的计算流程

    Figure 1.  Monte Carlo analysis program calculation flow

    图 2  不同厂家RP-3燃油平均闪点及标准差

    Figure 2.  Average flash point and standard deviation of RP-3 fuel from different manufacturers

    图 3  各国家不同种类燃油平均闪点及标准差

    Figure 3.  Average flash point and standard deviation of different fuel in different countries

    图 4  不同闪点不同计算次数对油箱可燃性暴露率的影响

    Figure 4.  Influence of different flash points and different calculation times on flammability exposure rate of fuel tank

    图 5  燃油平均闪点变化对油箱可燃性暴露率影响

    Figure 5.  Influence of fuel average flash point change on fuel tank flammability exposure rate

    图 6  燃油闪点标准差变化对油箱可燃性暴露率影响

    Figure 6.  Influence of fuel flash point interval variation on fuel tank flammability exposure rate

    图 7  不同燃油类型对油箱可燃性暴露率影响

    Figure 7.  Influence of different fuel types on fuel tank flammability exposure rate

    表  1  FAR25.981 条款的历次修订

    Table  1.   Previous amendments to FAR25.981

    序号生效日期条款编号关注内容
    11967.06.0425-11油箱温度
    22001.06.0625-102油箱点燃预防及初步
    可燃环境要求
    32008.09.1925-125油箱点燃预防及细化
    可燃环境要求
    下载: 导出CSV

    表  2  环境温度和燃油闪点高斯分布

    Table  2.   Gaussian distribution of ambient temperature and fuel flash point

    参数闪点温度/℃
    平均温度48.89(120℉)
    正标准差4.44(8℉)
    负标准差4.44(8℉)
    下载: 导出CSV
  • [1] 孟昭蓉, 杨春生. 世界航空事故汇编[M]. 北京: 中国民用航空杂志社, 2002.
    [2] WYCZALEK F A. TWA800 fuel tank flammability-an analytical investigation[J]. IEEE Aerospace and Electronic Systems Magazine,1998,13(1): 16-19. doi: 10.1109/62.653791
    [3] Federal Aviation Administration. Transport airplane fuel tank system design review, flammability reduction, and maintenance and inspection requirements: Notice No. 99-18[S]. Washington DC: Federal Register, 1999: 41-44.
    [4] Federal Aviation Administration. Transport airplane fuel tank system design review, flammability Ⅰ reduction, and maintenance and inspection requirements: Amendment Nos.21-78, 25-102[S]. Washington DC: Federal Register, 2005: 13.
    [5] Federal Aviation Administration. Reduction of fuel tank flammability in transport category airplanes: Notice No.05-14[S]. Washington DC: Federal Register, 2005: 34-36.
    [6] Federal Aviation Administration. Fuel tank flammability reduction means: AC25.981-2A[S]. Washington DC: Federal Register, 2008: 11-12.
    [7] 兰江,朱磊,赵竞全. 通用油箱热模型的建模与仿真[J]. 航空动力学报,2014,26(7): 124-131. doi: 10.13224/j.cnki.jasp.2014.07.015

    LAN Jiang,ZHU Lei,ZHAO Jingquan. Modeling and simulation of general fuel tank thermal model[J]. Journal of Aerospace Power,2014,26(7): 124-131. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.07.015
    [8] Federal Aviation Administration. Reduction of fuel tank system flammability in transport category airplanes: Amendment Nos. 25-125[S]. Washington DC: Federal Register, 2008: 5-8.
    [9] 中国民用航空局. 运输类飞机适航标准: CCAR-R4[S]. 北京: 中国民用航空局, 2011: 11.
    [10] 李杰,张宇,刘媛媛. 基于FTFAM的油箱可燃性暴露率影响因素研究[J]. 航空科学技术,2015,26(5): 34-38.

    LI Jie,ZHANG Yu,LIU Yuanyuan. Study on the factors affecting the fuel tank flammability exposure rate based on FTFAM[J]. Aeronautical Science and Technology,2015,26(5): 34-38. (in Chinese)
    [11] 付振东. 燃油中溶解氧逸出规律与油箱热模型技术研究[D]. 南京: 南京航空航天大学, 2013.

    FU Zhengdong. Study on function of oxygen evolution and fuel tank thermal model technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [12] 冯晨曦. 民机油箱气相空间氧浓度控制技术研究[D]. 南京: 南京航空航天大学, 2011.

    FENG Chenxi. Control technology of oxygen concentration on civil aircraft fuel tank ullage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
    [13] Federal Aviation Administration. Aircraft propulsion system design requirements: Amendment Nos.25-11[S]. Washington DC: Federal Register, 1967: 18-20.
    [14] Federal Aviation Administration. Fuel tank flammability reduction means advisory circular: No.25.981-2A[S]. Washington DC: Federal Register, 2008: 12-13.
    [15] Federal Aviation Administration. Familiarization briefing for fuel tank flammability rule: Amendment 25-125[R]. Washington DC: Federal Register, 2008: 4-8.
    [16] Federal Aviation Administration. Fuel tank flammability user manual[R]. DOT/FAAAR-05/8, 2008.
    [17] 刘春阳,李新,鲍梦瑶. 民用运输类飞机油箱可燃性要求[J]. 国际航空,2018(3): 74-76.

    LIU Chunyang,LI Xin,BAO Mengyao. Civil transport aircraft fuel tank flammability airworthiness requirement[J]. International Aviation,2018(3): 74-76. (in Chinese)
    [18] 雷延生,王澍. 基于FAA适航要求的飞机油箱防爆技术研究[J]. 民用飞机设计与研究,2011(3): 23-27. doi: 10.3969/j.issn.1674-9804.2011.03.009

    LEI Yanshu,WANG Shu. Research of aircraft fuel tank explosion prevention technique basing on FAA airworthiness requirement[J]. Civil Aircraft Design and Research,2011(3): 23-27. (in Chinese) doi: 10.3969/j.issn.1674-9804.2011.03.009
    [19] 张瑞华,刘卫华,刘春阳,等. 运输类飞机油箱可燃性适航符合性方法[J]. 航空动力学报,2020,35(5): 1099-1108.

    ZHANG Ruihua,LIU Weihua,LIU Chunyang,et al. Flammability and airworthiness compliance method of fuel tank for transport aircraft[J]. Journal of Aerospace Power,2020,35(5): 1099-1108. (in Chinese)
    [20] 冯诗愚,刘冠男,江荣杰,等. 飞机油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报,2021,36(3): 616-625.

    FENG Shiyu,LIU Guannan,JIANG Rongjie,et al. Research status and development trend of aircraft fuel tank on-board inerting technology[J]. Journal of Aerospace Power,2021,36(3): 616-625. (in Chinese)
    [21] 魏书有. 飞机油箱可燃性暴露评估研究[D]. 天津: 中国民航大学, 2013.

    WEI Shuyou. Aircraft fuel tank flammability exposure evaluation research[D]. Tianjin: College of Aeronautical Engineering Civil Aviation University of China, 2013. (in Chinese)
    [22] 童升华. 国产燃油理化性能与易燃性研究[D]. 南京: 南京航空航天大学, 2013.

    TONG Shenghua. Research on physicochemical characteristics and flammability of domestic fuels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [23] 王盛园. 基于国产燃油物理-化学特性的油箱可燃性评估技术研究[D]. 南京: 南京航空航天大学, 2012.

    WANG Shengyuan. Theoretical study of fuel tank flammability assessment technology based on physicochemical characteristics of domestic fuels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [24] 刘济瀛. 中国喷气燃料[M]. 北京: 中国石化出版社, 1991.
    [25] 张洪钧. 改善3号喷气燃料质量的措施[J]. 炼油设计,1998,28(3): 19-21.

    ZHANG Hongji. Measures for improving quality of jet fuel RP-3[J]. Petroleum Refinery Engineering,1998,28(3): 19-21. (in Chinese)
    [26] 张云杰. 低气压环境氧浓度对航空煤油闪点影响的研究[D]. 沈阳: 沈阳航空航天大学, 2019.

    ZHANG Yunjie. Study on the effect of oxygen concientration in pressure environment on flash point of aviation kerosene[D]. Shenyang: Shenyang Aerospace University, 2019. (in Chinese)
    [27] 刘宇. 3号喷气燃料阿贝尔闭口闪点测量不确定度的评定[J]. 辽宁化工,2019,48(12): 1223-1225,1248. doi: 10.3969/j.issn.1004-0935.2019.12.020

    LIU Yu. Evaluation of uncertainty in measurement of abel closed cup flash point of No.3 jet fuel[J]. Liaoning Chemical Industry,2019,48(12): 1223-1225,1248. (in Chinese) doi: 10.3969/j.issn.1004-0935.2019.12.020
    [28] EL-MAGHRABY R M. A study on bio-diesel and jet fuel blending for the production of renewable aviation fuel[J]. Materials Science Forum,2020,1008: 231-244. doi: 10.4028/www.scientific.net/MSF.1008.231
    [29] Coordinating Research Council Incorporation. Handbook of aviation fuel properties[M]. New York: Society of Automotive Engineers Distributor, 2004.
    [30] VOZKA P,VRTIŠKA D,ŠIMÁČEK P,et al. Impact of alternative fuel blending components on fuel composition and properties in blends with jet A[J]. Energy and Fuels,2019,33(4): 3275-3289. doi: 10.1021/acs.energyfuels.9b00105
    [31] SOCHET I,GILLARD P. Flammability of kerosene in civil and military aviation[J]. Journal of Loss Prevention in the Process Industries,2002,15(5): 335-345. doi: 10.1016/S0950-4230(02)00031-1
    [32] Federal Aviation Administration. Fuel tank flammability assessment method (Monte Carlo model): Version 11[R]. Washington DC: Federal Register, 2008.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  96
  • HTML浏览量:  37
  • PDF量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回