留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态甲烷管道预冷过程的仿真研究

陈玉 孙得川 曾卓雄

陈玉, 孙得川, 曾卓雄. 液态甲烷管道预冷过程的仿真研究[J]. 航空动力学报, 2024, 39(4):20210557 doi: 10.13224/j.cnki.jasp.20210557
引用本文: 陈玉, 孙得川, 曾卓雄. 液态甲烷管道预冷过程的仿真研究[J]. 航空动力学报, 2024, 39(4):20210557 doi: 10.13224/j.cnki.jasp.20210557
CHEN Yu, SUN Dechuan, ZENG Zhuoxiong. Simulation study on precooling process of liquid methane pipeline[J]. Journal of Aerospace Power, 2024, 39(4):20210557 doi: 10.13224/j.cnki.jasp.20210557
Citation: CHEN Yu, SUN Dechuan, ZENG Zhuoxiong. Simulation study on precooling process of liquid methane pipeline[J]. Journal of Aerospace Power, 2024, 39(4):20210557 doi: 10.13224/j.cnki.jasp.20210557

液态甲烷管道预冷过程的仿真研究

doi: 10.13224/j.cnki.jasp.20210557
详细信息
    作者简介:

    陈玉(1999-),女,硕士生,主要从事两相流动与传热过程研究。E-mail:yuchensuep@163.com

    通讯作者:

    孙得川(1973-),男,教授,博士,主要从事火箭发动机研究。E-mail:dechuans@dlut.edu.cn

  • 中图分类号: V421.42

Simulation study on precooling process of liquid methane pipeline

  • 摘要:

    低温推进剂液体火箭发动机在推进剂加注时需要进行管道预冷以避免推进剂气化。为揭示管路预冷过程中低温流体的两相流动特性,针对小型液氧/甲烷发动机液态甲烷管道的预冷过程进行了研究。采用Lee蒸发模型,模拟并分析了不同入口流量下的湍流传热过程,得到了管道预冷过程中甲烷的体积分数、温度、压力和速度的变化规律。结果表明:在管道预冷过程中,液态甲烷会发生闪蒸现象,甲烷的温度和压力的变化是影响闪蒸的主要因素;在低流量时,预冷时间与质量流量呈负相关,当质量流量增大到一定程度后,预冷时间趋于稳定值。研究结果可预示容许时间内的最优预冷流量,对提高预冷效率和改进低温推进剂加注过程具有指导作用。

     

  • 图 1  管路几何模型

    Figure 1.  Geometrical model of pipeline

    图 2  计算结果与实验对比

    Figure 2.  Comparison between calculation results and experiments

    图 3  不同入口流量条件下甲烷气体体积随时间的变化

    Figure 3.  Variation of methane gas volume with time under different inlet flow conditions

    图 4  不同时刻下甲烷气体体积分数沿管道位置的变化(q=73 g/s)

    Figure 4.  Variation of methane gas volume fraction along the pipeline position at different times (q=73 g/s)

    图 5  不同时刻下液态甲烷在预冷管道中的流型(q=73 g/s)

    Figure 5.  Flow pattern of liquid methane in precooling pipeline at different time (q=73 g/s)

    图 6  不同入口流量条件下甲烷的温度随时间的变化

    Figure 6.  Variation of methane temperature with time under different inlet flow conditions

    图 7  不同时刻下甲烷温度沿管道位置的变化(q=73 g/s)

    Figure 7.  Variation of methane temperature along the pipeline position at different times (q =73 g/s)

    图 8  不同入口流量条件下甲烷的压力随时间的变化

    Figure 8.  Variation of methane pressure with time under different inlet flow conditions

    图 9  不同时刻下压力沿管道位置的变化(q=73 g/s)

    Figure 9.  Variation of pressure along pipeline positions at different times (q=73 g/s)

    图 10  不同时刻下管道内的两相流场变化(q=375 g/s)

    Figure 10.  Variation of two-phase flow field in the pipeline at different times (q=375 g/s)

    图 11  不同入口流量条件下甲烷的速度随时间的变化

    Figure 11.  Variation of methane velocity with time under different inlet flow conditions

    图 12  不同时刻下甲烷速度沿管道位置的变化(q=73 g/s)

    Figure 12.  Variation of methane velocity along pipeline position at different times (q=73 g/s)

    图 13  不同入口流量条件下管道壁温随时间的变化

    Figure 13.  Variation of pipe wall temperature with time under different inlet flow conditions

    图 14  不同入口流量的甲烷预冷管道所需的时间

    Figure 14.  Time required for methane precooling pipelines with different inlet flows

    图 15  不同入口流量的甲烷所需的预冷量

    Figure 15.  Precooling amount required for methane at different mass flows

  • [1] 王娇娇,厉彦忠,王鑫宝,等. 低温推进剂管路预冷沸腾换热特性研究综述[J]. 宇航学报,2017,38(8): 779-788. WANG Jiaojiao,LI Yanzhong,WANG Xinbao,et al. Review of cryogenic boiling heat transfer during pipe chilldown[J]. Journal of Astronautics,2017,38(8): 779-788. (in Chinese doi: 10.3873/j.issn.1000-1328.2017.08.001

    WANG Jiaojiao, LI Yanzhong, WANG Xinbao, et al. Review of cryogenic boiling heat transfer during pipe chilldown[J]. Journal of Astronautics, 2017, 38(8): 779-788. (in Chinese) doi: 10.3873/j.issn.1000-1328.2017.08.001
    [2] JACKSON J K. Cryogenic two-phase flow during chilldown: flow transition and nucleate boiling heat transfer[D]. Gainesville,US: University of Florida ,2006.
    [3] JOHNSON J,SHINE S R. Transient cryogenic chill down process in horizontal and inclined pipes[J]. Cryogenics,2015,71: 7-17. doi: 10.1016/j.cryogenics.2015.05.003
    [4] HU Hong,CHUNG J N,AMBER S H. An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe[J]. Cryogenics,2012,52(4/5/6): 268-277.
    [5] HU Hong,WIJERATNE T K,CHUNG J N. Two-phase flow and heat transfer during chilldown of a simulated flexible metal hose using liquid nitrogen[J]. Journal of Low Temperature Physics,2014,174(5/6): 247-268.
    [6] VELAT C J. Experiments in cryogenic two phase flow[D]. Gainesville,US: University of Florida,2004.
    [7] VELAT C,JACKSON J,KLAUSNER J F,et al. Cryogenic two-phase flow during chilldown[C]//Proceedings of ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Charlotte,US: ASME,2009: 717-722.
    [8] DARR S R,HU Hong,GLIKIN N G,et al. An experimental study on terrestrial cryogenic transfer line chilldown: Ⅰ effect of mass flux,equilibrium quality,and inlet subcooling[J]. International Journal of Heat and Mass Transfer,2016,103: 1225-1242. doi: 10.1016/j.ijheatmasstransfer.2016.05.019
    [9] DARR S R,HU Hong,GLIKIN N,et al. An experimental study on terrestrial cryogenic tube chilldown: Ⅱ effect of flow direction with respect to gravity and new correlation set[J]. International Journal of Heat and Mass Transfer,2016,103: 1243-1260. doi: 10.1016/j.ijheatmasstransfer.2016.08.044
    [10] HARTWIG J,HU Hong,STYBORSKI J,et al. Comparison of cryogenic flow boiling in liquid nitrogen and liquid hydrogen chilldown experiments[J]. International Journal of Heat and Mass Transfer,2015,88: 662-673. doi: 10.1016/j.ijheatmasstransfer.2015.04.102
    [11] HARTWIG J,RAME E,MCQUILLEN J. Pulse chilldown tests of a tank-to-tank liquid hydrogen propellant transfer line[R]. AIAA 2016-2186,2016.
    [12] 陈二锋,厉彦忠,程向华. 液体火箭发动机自然循环预冷回路的数值研究[J]. 航空动力学报,2009,24(3): 698-704. CHEN Erfeng,LI Yanzhong,CHENG Xianghua. Numerical studies on natural circulation precooling loop of cryogenic liquid rocket engine[J]. Journal of Aerospace Power,2009,24(3): 698-704. (in Chinese doi: 10.13224/j.cnki.jasp.2009.03.033

    CHEN Erfeng, LI Yanzhong, CHENG Xianghua. Numerical studies on natural circulation precooling loop of cryogenic liquid rocket engine[J]. Journal of Aerospace Power, 2009, 24(3): 698-704. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.03.033
    [13] 程向华,薛会建,李宏刚,等. 低温预冷管路流动及传热非稳态特性研究[J]. 火箭推进,2018,44(6): 53-56. CHENG Xianghua,XUE Huijian,LI Honggang,et al. Investigation on unsteady characteristics of flow and heat transfer in cryogenic precooling pipe[J]. Journal of Rocket Propulsion,2018,44(6): 53-56. (in Chinese doi: 10.3969/j.issn.1672-9374.2018.06.008

    CHENG Xianghua, XUE Huijian, LI Honggang, et al. Investigation on unsteady characteristics of flow and heat transfer in cryogenic precooling pipe[J]. Journal of Rocket Propulsion, 2018, 44(6): 53-56. (in Chinese) doi: 10.3969/j.issn.1672-9374.2018.06.008
    [14] 陈亮,梁国柱,邓新宇,等. 贮箱内低温推进剂汽化过程的CFD数值仿真[J]. 北京航空航天大学学报,2013,39(2): 264-268. CHEN Liang,LIANG Guozhu,DENG Xinyu,et al. CFD numerical simulation of cryogenic propellant vaporization in tank[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(2): 264-268. (in Chinese doi: 10.13700/j.bh.1001-5965.2013.02.001

    CHEN Liang, LIANG Guozhu, DENG Xinyu, et al. CFD numerical simulation of cryogenic propellant vaporization in tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 264-268. (in Chinese) doi: 10.13700/j.bh.1001-5965.2013.02.001
    [15] LEE W. A pressure iteration scheme for two-phase flow modeling[R]. Technical Report LA-UR,1979.
    [16] HERTZ H. On the evaporation of liquids,especially mercury,in vacuo[J]. Leipzig: Annalen der Physik,1882,17: 177-193.
    [17] KNUDSEN M. Maximum rate of vaporization of mercury[J]. Leipzig: Annalen der Physik,1915,47: 697-705.
    [18] TANASAWA I. Advances in condensation heat transfer[J]. Advances in Heat Transfer,1991,21: 55-139.
    [19] YUAN Kun,JI Yan,CHUNG J N. Cryogenic chilldown process under low flow rates[J]. International Journal of Heat and Mass Transfer,2007,50(19/20): 4011-4022.
    [20] 蔡凤英,谈宗山,孟赫,等. 化工安全工程[M]. 北京: 科学出版社,2001.
  • 加载中
图(15)
计量
  • 文章访问数:  72
  • HTML浏览量:  31
  • PDF量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 网络出版日期:  2023-12-13

目录

    /

    返回文章
    返回