留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

端壁移动对悬臂静子气动性能的影响

安广丰 范竹 于贤君 刘宝杰

安广丰, 范竹, 于贤君, 等. 端壁移动对悬臂静子气动性能的影响[J]. 航空动力学报, 2024, 39(4):20210564 doi: 10.13224/j.cnki.jasp.20210564
引用本文: 安广丰, 范竹, 于贤君, 等. 端壁移动对悬臂静子气动性能的影响[J]. 航空动力学报, 2024, 39(4):20210564 doi: 10.13224/j.cnki.jasp.20210564
AN Guangfeng, FAN Zhu, YU Xianjun, et al. Effects of endwall movement on the aerodynamic performance of cantilevered stators[J]. Journal of Aerospace Power, 2024, 39(4):20210564 doi: 10.13224/j.cnki.jasp.20210564
Citation: AN Guangfeng, FAN Zhu, YU Xianjun, et al. Effects of endwall movement on the aerodynamic performance of cantilevered stators[J]. Journal of Aerospace Power, 2024, 39(4):20210564 doi: 10.13224/j.cnki.jasp.20210564

端壁移动对悬臂静子气动性能的影响

doi: 10.13224/j.cnki.jasp.20210564
基金项目: 国家自然科学基金(51790511,51806004); 国家科技重大专项(J2019-Ⅱ-0004-0024)
详细信息
    作者简介:

    安广丰(1989-),男,副研究员、硕士生导师,博士,主要从事叶轮机械气动热力学研究

    通讯作者:

    于贤君(1980-),男,副研究员、博士生导师,博士,主要从事叶轮机械气动热力学研究。E-mail:yuxianjun@buaa.edu.cn

  • 中图分类号: V231.3

Effects of endwall movement on the aerodynamic performance of cantilevered stators

  • 摘要:

    为了探究端壁移动对悬臂静子性能的影响,对轮毂移动与否、轮毂移动速度大小以及移动轮毂情况下间隙大小对某一低速轴流压气机悬臂静子内部流动及压气机性能的影响进行了详细的研究。结果表明,随着端壁移动速度的增加或者端壁移动情况下叶根间隙的减小,静子近轮毂区域的流动堵塞/流动损失减小、压气机性能得到提升,造成这一现象的主要原因是端壁移动情况下二次流的消失以及参与掺混的泄漏流流量的减小;端壁移动也会影响静子进口流场,进而影响转子的特性,但相对于对静子特性的影响,转子特性的变化幅值较小。

     

  • 图 1  低速大尺寸轴流压气机实验台

    Figure 1.  Low-speed large-scale axial compressor experiment facility

    图 2  数值计算网格

    Figure 2.  Numerical grid

    图 3  压气机级静压升特性

    Figure 3.  Static pressure rise characteristics of compressor stage

    图 4  压气机级效率特性

    Figure 4.  Efficiency characteristics of compressor stage

    图 5  设计工况静子吸力面极限流线

    Figure 5.  Limit streamline of the stator suction surface in design condition

    图 6  近失速工况静子吸力面极限流线

    Figure 6.  Limit streamline of the stator suction surface in near-stall condition

    图 7  设计工况静子出口无量纲轴向速度云图

    Figure 7.  Contour of dimensionless axial velocity at stator outlet in design condition

    图 8  近失速工况静子出口无量纲轴向速度云图

    Figure 8.  Contour of dimensionless axial velocity at stator outlet in near-stall condition

    图 9  静子特性

    Figure 9.  Characteristics of stators

    图 10  设计工况静子通道内三维流场

    Figure 10.  Three-dimensional flow field in stator passage in design condition

    图 11  近失速工况静子通道内三维流场

    Figure 11.  Three-dimensional flow field in stator passage in near-stall condition

    图 12  设计点工况泄漏流流量变化及由泄漏流引起的堵塞区域内流量的变化

    Figure 12.  Variation of leakage flow and blockage region flow caused by the leakage in design condition

    图 13  设计点工况由泄漏流引起的堵塞区域内流动损失的变化

    Figure 13.  Variation of flow loss in blockage area caused by the leakage in design condition

    图 14  静子通道内三维流场结构(g=1.00τn=2200 r/min)

    Figure 14.  Three-dimensional flow field in stator passage (g=1.00τn=2200 r/min)

    图 15  设计工况静子间隙内三维流线的发展

    Figure 15.  Development of three-dimensional streamlines in the stators’ gap in design condition

    图 16  静子通道内三维流场结构(g=0.50τn=1100 r/min)

    Figure 16.  Three-dimensional flow field in stator passage (g=0.50τ, n=1100 r/min)

    图 17  静子总压损失系数分布

    Figure 17.  Total pressure loss coefficient distribution of stators

    图 18  静子出口无量纲轴向速度分布

    Figure 18.  Dimensionless axial velocity distribution of stator outlet

    图 19  静子进口无量纲轴向速度分布

    Figure 19.  Dimensionless axial velocity distribution of stator inlet

    图 20  静子进口气流角分布

    Figure 20.  Flow angle distribution of stator inlet

    图 21  转子静压升特性

    Figure 21.  Static pressure rise characteristics of rotors

    表  1  算例设置

    Table  1.   Cases settings

    悬臂静子端壁
    转速n/ (r/min)
    静子间隙g
    00τ, 0.25τ, 0.50τ, 1.00τ, 2.00τ
    11000.50τ, 1.00τ
    22001.00τ
    下载: 导出CSV
  • [1] DEAN R C. Secondary flow in axial compressors[D]. Cambridge,US: Massachusetts Institute of Technology,1954.
    [2] LAKSHMINARAYANA B,HORLOCK J H. Tip-clearance flow and losses for an isolated compressor blade[R]. London,UK: Aeronautical Research Council London,1963.
    [3] LAKSHMINARAYANA B,HORLOCK H. Leakage and secondary flows in compressor cascades[R]. Richmond,UK: HM Stationery Office,1967.
    [4] LAKSHMINARAYANA B. Methods of predicting the tip clearance effects in axial flow turbomachinery[J]. Journal of Basic Engineering,1970,92(3): 467-480. doi: 10.1115/1.3425036
    [5] SINGH U K,GINDER R B. The effect of hub leakage flow in a transonic compressor stator[C]//Proceedings of ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Stockholm,Sweden: American Society of Mechanical Engineers,1998: 1-11.
    [6] LEE C Y,SONG J,LEE S,et al. Effect of a gap between inner casing and stator blade on axial compressor performance[C]//Proceedings of ASME Turbo Expo 2010: Power for Land,Sea,and Air. Glasgow,UK: American Society of Mechanical Engineers,2010: 203-210.
    [7] GEORGE K K,AGNIMITRA SUNKARA S N,GEORGE J T,et al. Investigations on stator hub end losses and its control in an axial flow compressor[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf,Germany: American Society of Mechanical Engineers,2014: 1-11.
    [8] GBADEBO S A,CUMPSTY N A,HYNES T P. Interaction of tip clearance flow and three-dimensional separations in axial compressors[J]. Journal of Turbomachinery,2007,129(4): 679-685. doi: 10.1115/1.2720876
    [9] DONG Y,GALLIMORE S J,HODSON H P. Three-dimensional flows and loss reduction in axial compressors[J]. Journal of Turbomachinery,1987,109(3): 354-361. doi: 10.1115/1.3262113
    [10] PEACOCK R E. A review of turbomachinery tip gap effects: Part 1 cascades[J]. International Journal of Heat and Fluid Flow,1982,3(4): 185-193. doi: 10.1016/0142-727X(82)90017-0
    [11] SAKULKAEW S,TAN C S,DONAHOO E,et al. Compressor efficiency variation with rotor tip gap from vanishing to large clearance[J]. Journal of Turbomachinery,2013,135(3): 031030. doi: 10.1115/1.4007547
    [12] 吴艳辉,楚武利,刘志伟. 移动壁对压气机叶栅间隙流动的影响[J]. 航空动力学报,2006,21(1): 112-118. WU Yanhui,CHU Wuli,LIU Zhiwei. Influence of moving end-wall on tip clearance flow in an axial-flow compressor cascade[J]. Journal of Aerospace Power,2006,21(1): 112-118. (in Chinese

    WU Yanhui, CHU Wuli, LIU Zhiwei. Influence of moving end-wall on tip clearance flow in an axial-flow compressor cascade[J]. Journal of Aerospace Power, 2006, 21(1): 112-118. (in Chinese)
    [13] 贾希诚,王正明,蔡睿贤. 叶轮机械中叶顶间隙形态对气动性能影响的数值研究[J]. 工程热物理学报,2001,22(4): 431-434. JIA Xicheng,WANG Zhengming,CAI Ruixian. Numerical investigation of the effects of tip gap shapes on aerodynamic performance in turbomachinery[J]. Journal of Engineering Thermophysics,2001,22(4): 431-434. (in Chinese

    JIA Xicheng, WANG Zhengming, CAI Ruixian. Numerical investigation of the effects of tip gap shapes on aerodynamic performance in turbomachinery[J]. Journal of Engineering Thermophysics, 2001, 22(4): 431-434. (in Chinese)
    [14] 余春华,陆亚钧,李秋实,等. 处理轮毂转速的实验研究[J]. 实验流体力学,2009,23(2): 20-25. YU Chunhua,LU Yajun,LI Qiushi,et al. Experimental investigation on hub treatment rotation speed[J]. Journal of Experiments in Fluid Mechanics,2009,23(2): 20-25. (in Chinese

    YU Chunhua, LU Yajun, LI Qiushi, et al. Experimental investigation on hub treatment rotation speed[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 20-25. (in Chinese)
    [15] YANG C W,LU X G,ZHANG Y F,et al. Numerical investigation of a cantilevered compressor stator at varying clearance sizes[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montreal. Quebec,Canada: American Society of Mechanical Engineers,2015: 1-9.
    [16] JIANG C,HU J,WANG J Y,et al. The effect of tip clearance and hub rotation on the performance of an axial compressor stator[C]//Proceedings of ASME 2019 Gas Turbine India Conference. Chennai,Tamil Nadu,India: American Society of Mechanical Engineers,2019: 1-11.
    [17] LIU Baojie,QIU Ying,AN Guangfeng,et al. Experimental investigation of the flow mechanisms and the performance change of a highly loaded axial compressor stage with/without stator hub clearance[J]. Applied Sciences,2019,9(23): 5134-5153. doi: 10.3390/app9235134
    [18] YU Xianjun,LIU Baojie. Research on three-dimensional blade designs in an ultra-highly loaded low-speed axial compressor stage: design and numerical investigations[J]. Advances in Mechanical Engineering,2016,8(10): 1-16.
    [19] LIU Baojie,AN Guangfeng,YU Xianjun. Assessment of curvature correction and reattachment modification into the shear stress transport model within the subsonic axial compressor simulations[J]. Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy,2015,229(8): 910-927.
    [20] CHEN G T. Vortical structures in turbomachinery tip clearance flows[D]. Cambridge,US: Massachusetts Institute of Technology,1991.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  66
  • HTML浏览量:  36
  • PDF量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-05
  • 网络出版日期:  2023-12-14

目录

    /

    返回文章
    返回