留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷嘴结构和射流参数对射流预冷温度特性的影响

冯爽 李宝宽 杨晓晰 扈鹏飞

冯爽, 李宝宽, 杨晓晰, 等. 喷嘴结构和射流参数对射流预冷温度特性的影响[J]. 航空动力学报, 2024, 39(5):20210566 doi: 10.13224/j.cnki.jasp.20210566
引用本文: 冯爽, 李宝宽, 杨晓晰, 等. 喷嘴结构和射流参数对射流预冷温度特性的影响[J]. 航空动力学报, 2024, 39(5):20210566 doi: 10.13224/j.cnki.jasp.20210566
FENG Shuang, LI Baokuan, YANG Xiaoxi, et al. Effect of nozzle structure and jet parameters on the temperature characteristics of mass injection and pre-compressor cooling[J]. Journal of Aerospace Power, 2024, 39(5):20210566 doi: 10.13224/j.cnki.jasp.20210566
Citation: FENG Shuang, LI Baokuan, YANG Xiaoxi, et al. Effect of nozzle structure and jet parameters on the temperature characteristics of mass injection and pre-compressor cooling[J]. Journal of Aerospace Power, 2024, 39(5):20210566 doi: 10.13224/j.cnki.jasp.20210566

喷嘴结构和射流参数对射流预冷温度特性的影响

doi: 10.13224/j.cnki.jasp.20210566
基金项目: 中央高校基本科研业务费专项基金(N2025013)
详细信息
    作者简介:

    冯爽(1997-),女,硕士生,研究领域为多相流热物理。E-mail:1901577@stu.neu.edu.cn

    通讯作者:

    李宝宽(1963-),男,教授、博士生导师,博士,研究领域为多相流热物理。E-mail:libk@mail.neu.edu.cn

  • 中图分类号: V236

Effect of nozzle structure and jet parameters on the temperature characteristics of mass injection and pre-compressor cooling

  • 摘要:

    航空发动机进气温度过高是限制其性能的关键问题之一,采用射流预冷技术可以有效降低航空发动机进气温度。为了研究射流预冷技术对进气道内温度场的影响,基于欧拉-拉格朗日方法,建立航空发动机进气道液滴雾化和蒸发过程的数学模型,实现气液两相的双向耦合,描述了射流预冷过程。并与已有的试验结果进行对比,验证了数学模型的准确性。并利用该数学模型研究了水气比、喷射速度、液滴粒径和喷嘴锥角对进气道降温效果和温度畸变的影响。结果表明:改变水气比发动机进气温度变化最显著,当水气比由0.02增大至0.055时,温降系数由8.10%增加到19.87%,蒸发率由85.76%降低为79.80%;当水气比为0.055、喷射速度为10 m/s、液滴粒径为25 μm和喷嘴锥角为15°时,温降系数最大为22.77%;增大喷嘴锥角和减小喷射速度会使进气道出口截面温度场分布更均匀。

     

  • 图 1  物理模型及网格划分

    Figure 1.  Physical model and grid division

    图 2  不同网格数量在3D截面处的温度分布

    Figure 2.  Temperature distribution at 3D cross-section with different grid quantities

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  不同截面试验温度和模拟温度的比较

    Figure 4.  Comparison of test and simulated temperatures for different cross-sections

    图 5  不同水气比下进气道中截面温度分布云图

    Figure 5.  Cloud map of cross-sectional temperature distribution in the intake duct under different water to air ratios

    图 6  不同水气比下不同截面的平均温度对比图

    Figure 6.  Comparison of average temperature at different cross-sections under different water to air ratios

    图 7  不同水气比下蒸发特性的变化图

    Figure 7.  Changes in evaporation characteristics under different water to air ratios

    图 8  不同流速下出口截面的温度畸变分析图

    Figure 8.  Analysis of temperature distortion at outlet cross-section under different flow velocities

    图 9  不同流速下进气道中截面温度分布云图

    Figure 9.  Cloud map of cross-sectional temperature distribution in the intake duct at different flow velocities

    图 10  不同流速下不同截面的平均温度对比图

    Figure 10.  Comparison of average temperature at different cross-sections under different flow rates

    图 11  不同流速下出口截面的温度畸变分析

    Figure 11.  Temperature distortion analysis of outlet section under different flow velocities

    图 12  不同粒径下进气道中截面的温度分布云图

    Figure 12.  Temperature distribution cloud map of the cross-section in the intake duct under different particle sizes

    图 13  不同粒径下不同截面的平均温度对比图

    Figure 13.  Comparison of average temperature at different cross-sections under different particle sizes

    图 14  不同粒径不同截面的蒸发量

    Figure 14.  Evaporation of different particle sizes and cross-sections

    图 15  不同粒径下液滴分布和各截面温度分布

    Figure 15.  Droplet distribution and temperature distribution at different cross-sections under different particle sizes

    图 16  不同粒径下出口截面的温度畸变分析

    Figure 16.  Temperature distortion analysis of outlet cross-section under different particle sizes

    图 17  不同喷嘴锥角下进气道中截面的温度分布云图

    Figure 17.  Temperature distribution cloud map of the cross-section in the intake duct at different nozzle cone angles

    图 18  不同喷嘴锥角下出口截面的温度畸变分析

    Figure 18.  Temperature distortion analysis of outlet cross-section under different nozzle cone angles

  • [1] 尚守堂,田方超,扈鹏飞. 涡轮发动机射流预冷关键技术分析[J]. 航空科学技术,2018,29(1): 1-3. SHANG Shoutang,TIAN Fangchao,HU Pengfei. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology,2018,29(1): 1-3. (in Chinese

    SHANG Shoutang, TIAN Fangchao, HU Pengfei. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology, 2018, 29(1): 1-3. (in Chinese)
    [2] 芮长胜,张超,越冬峰. 射流预冷涡轮发动机技术研究及发展[J]. 航空科学技术,2015,26(10): 53-59. RUI Changsheng,ZHANG Chao,YUE Dongfeng. Technical study and development of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology,2015,26(10): 53-59. (in Chinese

    RUI Changsheng, ZHANG Chao, YUE Dongfeng. Technical study and development of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology, 2015, 26(10): 53-59. (in Chinese)
    [3] YOUNG D A,OLDS J. Responsive access small cargo affordable launch (RASCAL) independent performance evaluation[R]. AIAA 2005-3241,2005.
    [4] KLOESEL K,CLARK C. Preliminary MIPCC enhanced F-4 and F-15 performance characteristics for a first stage reusable launch vehicle[R]. AIAA 2013-5528,2013.
    [5] CARTER P,BALEPIN V. Mass injection and precompressor cooling engines analyses[R]. AIAA 2002-4127,2002.
    [6] LIN Aqiang,ZHOU Jie,FAWZY H,et al. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine[J]. International Journal of Heat and Mass Transfer,2019,135: 620-630. doi: 10.1016/j.ijheatmasstransfer.2019.02.025
    [7] LIN Aqiang,ZHENG Qun,JIANG Yuting,et al. Sensitivity of air/mist non-equilibrium phase transition cooling to transient characteristics in a compressor of gas turbine[J]. International Journal of Heat and Mass Transfer,2019,137: 882-894. doi: 10.1016/j.ijheatmasstransfer.2019.03.143
    [8] CHAKER M,MEHER-HOMJI C B,MEE T III. Inlet fogging of gas turbine engines: test and analytical investigations on impaction pin fog nozzle behavior[J]. Journal of Engineering for Gas Turbines and Power,2006,128(4): 826-839. doi: 10.1115/1.1808429
    [9] CHAKER M,MEHER-HOMJI C B,MEE T III. Inlet fogging of gas turbine engines: Part Ⅰ fog droplet thermodynamics,heat transfer,and practical considerations[J]. Journal of Engineering for Gas Turbines and Power,2004,126(3): 545-558. doi: 10.1115/1.1712981
    [10] CHAKER M,MEHER-HOMJI C B,MEE T. Inlet fogging of gas turbine engines: Part B fog droplet sizing analysis,nozzle types,measurement and testing [R]. Amsterdam,The Netherlands: ASME,2002.
    [11] 商旭升,蔡元虎,陈玉春,等. 高速飞行器用射流预冷却涡轮基发动机性能模拟[J]. 中国空间科学技术,2005,25(4): 54-58. SHANG Xusheng,CAI Yuanhu,CHEN Yuchun,et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology,2005,25(4): 54-58. (in Chinese

    SHANG Xusheng, CAI Yuanhu, CHEN Yuchun, et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology, 2005, 25(4): 54-58. (in Chinese)
    [12] 涂洪妍,邓远灏,康松,等. 水气比对射流预冷喷射特性影响的数值研究[J]. 推进技术,2017,38(6): 1302-1309. TU Hongyan,DENG Yuanhao,KANG Song,et al. Numerical simulation for effects for water/air ratio on injection characteristics with water injection pre-compressor cooling[J]. Journal of Propulsion Technology,2017,38(6): 1302-1309. (in Chinese

    TU Hongyan, DENG Yuanhao, KANG Song, et al. Numerical simulation for effects for water/air ratio on injection characteristics with water injection pre-compressor cooling[J]. Journal of Propulsion Technology, 2017, 38(6): 1302-1309. (in Chinese)
    [13] 耿欣,薛秀生,王晓良. 射流预冷试验用温度探针的设计与测试[J]. 航空发动机,2020,46(3): 84-89. GENG Xin,XUE Xiusheng,WANG Xiaoliang. Design and test of temperature probe for jet pre-cooling test[J]. Aeroengine,2020,46(3): 84-89. (in Chinese

    GENG Xin, XUE Xiusheng, WANG Xiaoliang. Design and test of temperature probe for jet pre-cooling test[J]. Aeroengine, 2020, 46(3): 84-89. (in Chinese)
    [14] 耿欣,王晓良,薛秀生. 射流预冷试验防水温度传感器设计[J]. 航空发动机,2019,45(2): 69-73. GENG Xin,WANG Xiaoliang,XUE Xiusheng. Design of water-proof temperature sensor for jet pre-cooling test[J]. Aeroengine,2019,45(2): 69-73. (in Chinese

    GENG Xin, WANG Xiaoliang, XUE Xiusheng. Design of water-proof temperature sensor for jet pre-cooling test[J]. Aeroengine, 2019, 45(2): 69-73. (in Chinese)
    [15] 林阿强,郑群,吴锋,等. 航空涡轮发动机射流预冷技术研究[J]. 推进技术,2020,41(4): 721-728. LIN Aqiang,ZHENG Qun,WU Feng,et al. Investigation on mass injection pre-cooling technology of aero-turbine engine[J]. Journal of Propulsion Technology,2020,41(4): 721-728. (in Chinese

    LIN Aqiang, ZHENG Qun, WU Feng, et al. Investigation on mass injection pre-cooling technology of aero-turbine engine[J]. Journal of Propulsion Technology, 2020, 41(4): 721-728. (in Chinese)
    [16] 叶巍,乔渭阳,侯敏杰. 发动机在进气温度畸变条件下的特性研究[J]. 推进技术,2008,29(6): 677-680. YE Wei,QIAO Weiyang,HOU Minjie. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology,2008,29(6): 677-680. (in Chinese

    YE Wei, QIAO Weiyang, HOU Minjie. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology, 2008, 29(6): 677-680. (in Chinese)
    [17] 谢业平,刘永泉,潘宝军. 真实进气条件下发动机气动稳定性计算方法[J]. 航空动力学报,2019,34(4): 804-812. XIE Yeping,LIU Yongquan,PAN Baojun. Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power,2019,34(4): 804-812. (in Chinese

    XIE Yeping, LIU Yongquan, PAN Baojun. Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power, 2019, 34(4): 804-812. (in Chinese)
    [18] 刘旭峰,常鸿雯,薛洪科,等. 射流预冷装置温降与流阻特性试验研究[J]. 航空发动机,2018,44(2): 81-86. LIU Xufeng,CHANG Hongwen,XUE Hongke,et al. Investigation on temperature drop and flow resistance characteristics of mass injection pre-compressor cooling device[J]. Aeroengine,2018,44(2): 81-86. (in Chinese

    LIU Xufeng, CHANG Hongwen, XUE Hongke, et al. Investigation on temperature drop and flow resistance characteristics of mass injection pre-compressor cooling device[J]. Aeroengine, 2018, 44(2): 81-86. (in Chinese)
  • 加载中
图(18)
计量
  • 文章访问数:  38
  • HTML浏览量:  13
  • PDF量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回