留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴流状态对转螺旋桨气动性能高效预测方法

原昕 招启军 赵国庆

原昕, 招启军, 赵国庆. 轴流状态对转螺旋桨气动性能高效预测方法[J]. 航空动力学报, 2024, 39(4):20210567 doi: 10.13224/j.cnki.jasp.20210567
引用本文: 原昕, 招启军, 赵国庆. 轴流状态对转螺旋桨气动性能高效预测方法[J]. 航空动力学报, 2024, 39(4):20210567 doi: 10.13224/j.cnki.jasp.20210567
YUAN Xin, ZHAO Qijun, ZHAO Guoqing. Efficient aerodynamic prediction method of contra-rotating propellers in axial flight[J]. Journal of Aerospace Power, 2024, 39(4):20210567 doi: 10.13224/j.cnki.jasp.20210567
Citation: YUAN Xin, ZHAO Qijun, ZHAO Guoqing. Efficient aerodynamic prediction method of contra-rotating propellers in axial flight[J]. Journal of Aerospace Power, 2024, 39(4):20210567 doi: 10.13224/j.cnki.jasp.20210567

轴流状态对转螺旋桨气动性能高效预测方法

doi: 10.13224/j.cnki.jasp.20210567
基金项目: 国家自然科学基金(12032012,11872211)
详细信息
    作者简介:

    原昕(1994-),女,博士生,主要从事共轴旋翼/对转螺旋桨气动研究

  • 中图分类号: V211

Efficient aerodynamic prediction method of contra-rotating propellers in axial flight

  • 摘要:

    提出了一套适用于共轴对转螺旋桨轴流状态的高效气动性能预测方法。为消除大入流角状态下小角度假设引入的误差,应用了精确的气动力分解模型与Prandtl桨尖损失函数;根据对转系统的桨尖涡演化规律,发展了轴流状态的尾迹叠加模型,构建了考虑前后桨之间轴向相互气动干扰和前桨对后桨的周向诱导的干扰模式;进而建立起了基于入流角求解的共轴对转螺旋桨的气动性能预测方法。使用该方法计算了对转螺旋桨在不同前飞速度下气动性能随前进比的变化,结果表明非失速段的拉力和功率消耗的预测结果与试验值一致性良好,整体推进效率与试验值吻合。通过对孤立高速螺旋桨、共轴双旋翼以及对转螺旋桨气动性能的评估,表明与采用小角度假设、忽略双桨间的部分干扰并基于入流比求解的常规气动模型相比,该方法对共轴对转螺旋桨的拉力、功率消耗和推进效率的预测更可靠。

     

  • 图 1  孤立螺旋桨流管[17]

    Figure 1.  Streamtube of a single propeller[17]

    图 2  作动盘上圆环的划分

    Figure 2.  Annulus on the actuator disc

    图 3  叶素剖面来流和受力示意图

    Figure 3.  Flow and force directions on a blade element

    图 4  轴流状态尾迹叠加示意图

    Figure 4.  Wake superposition in axial flight

    图 5  共轴对转螺旋桨轴向速度分布

    Figure 5.  Axial velocity distribution of a contra-rotating propeller

    图 6  共轴对转螺旋桨求解流程图

    Figure 6.  Calculation flow chart of a contra-rotating propeller

    图 7  NACA 16-009翼型气动力计算结果与试验对比

    Figure 7.  Comparison of calculated and measured aerodynamic characteristics of NACA 16-009 airfoil

    图 8  螺旋桨拉力随前飞速度变化曲线

    Figure 8.  Thrust coefficient of the propeller as a function of forward speed ratio

    图 9  螺旋桨功率系数随前飞速度变化曲线

    Figure 9.  Power coefficient of the propeller as a function of forward speed ratio

    图 10  螺旋桨推进效率随前飞速度变化曲线

    Figure 10.  Propulsive efficiency of the propeller as a function of forward speed ratio

    图 11  HC1悬停状态气动性能计算值与试验值对比

    Figure 11.  Comparison of calculated results with measurements of HC1 in hover

    图 12  NACA 3-(3)(05)-05对转螺旋桨外形曲线

    Figure 12.  Blade-form curves for NACA 3-(3)(05)-05 dual propeller

    图 13  对转螺旋拉力系数和功率系数随前进比变化

    Figure 13.  Thrust and power coefficients of the contra-rotating propeller as a function of advance ratio

    图 14  对转螺旋效率随前进比变化

    Figure 14.  Propulsive efficiencies of the contra-rotating propeller as a function of advance ratio

    图 15  给定状态下前后桨功率系数随前进比变化曲线

    Figure 15.  Variations of the front and rear propellers with advance ratio under fixed conditions

    表  1  有无应用小角度假设下的叶素项对比

    Table  1.   Comparison of blade element terms with and without small angle assumptions

    性能 大角度假设
    (真实情况)
    小角度假设 30°入流角
    示例误差/%
    $ {\mathrm{d}}T $ $ {\mathrm{d}}L\cos\; {\phi} - {\mathrm{d}}D\sin \;{\phi} $ $ {\mathrm{d}}L $ 16.0
    $ {\mathrm{d}}Q $ $ ( {{\mathrm{d}}L\sin \;{\phi} + {\mathrm{d}}D\cos\; {\phi} }) r $ $ ( {{\phi} {\mathrm{d}}L + {\rm{d}}D} ) r $ 4.9
    $ {\phi} $ $ {\mathrm{arc}}{\tan} ( {{{{V_{\text{0}}}} / {{W_{\text{e}}}}}} ) $ $ {{{V_{\text{0}}}} \mathord{\left/ {\vphantom {{{V_{\text{0}}}} {{W_{\text{e}}}}}} \right. } {{W_{\text{e}}}}} $ 10.3
    下载: 导出CSV
  • [1] HAGER R D,VRABEL D. Advanced turboprop project[R]. NASA SP-495,1988.
    [2] LESIEUTRE D J,SULLIVAN J P. The analysis of counter-rotating propeller systems[J]. SAE transactions,1985,94: 564-575.
    [3] STUERMER A,YIN J,AKKERMANS R. Progress in aerodynamic and aeroacoustic integration of CROR propulsion systems[J]. The Aeronautical Journal,2014,118(1208): 1137-1158. doi: 10.1017/S0001924000009829
    [4] GRAY W,MASTROCOLA N. Representative operating charts of propellers tested in the NACA 20-foot propeller-research tunnel[R]. NACA ARR No. 3125,1943.
    [5] MIKKELSON D,MITCHELL G,BOBER L. Summary of recent NASA propeller research[R]. NASA TM 83733,1984.
    [6] STÜRMER A,GUTIERREZ C O M,ROOSENBOOM E W M,et al. Experimental and numerical investigation of a contra rotating open-rotor flowfield[J]. Journal of Aircraft,2012,49(6): 1868-1877. doi: 10.2514/1.C031698
    [7] 闫文辉,汤斯佳,王奉明,等. 共轴对转螺旋桨的非定常气动干扰[J]. 航空动力学报,2021,36(7): 1398-1405. YAN Wenhui,TANG Sijia,WANG Fengming,et al. Unsteady aerodynamic interactions of contra rotating propeller[J]. Journal of Aerospace Power,2021,36(7): 1398-1405. (in Chinese doi: 10.13224/j.cnki.jasp.20210051

    YAN Wenhui, TANG Sijia, WANG Fengming, et al. Unsteady aerodynamic interactions of contra rotating propeller[J]. Journal of Aerospace Power, 2021, 36(7): 1398-1405. (in Chinese) doi: 10.13224/j.cnki.jasp.20210051
    [8] 史文博,李杰. 对转螺旋桨流场气动干扰数值模拟[J]. 航空动力学报,2019,34(4): 829-837. SHI Wenbo,LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power,2019,34(4): 829-837. (in Chinese doi: 10.13224/j.cnki.jasp.2019.04.012

    SHI Wenbo, LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power, 2019, 34(4): 829-837. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.04.012
    [9] GUR O,ROSEN A. Comparison between blade-element models of propellers[J]. The Aeronautical Journal,2008,112(1138): 689-704. doi: 10.1017/S0001924000002669
    [10] WINARTO H. BEMT algorithm for the prediction of the performance of arbitrary propellers[R]. CR COE-AL 2004-HW3-01,2004.
    [11] LEISHMAN J G,ANANTHAN S. An optimum coaxial rotor system for axial flight[J]. Journal of the American Helicopter Society,2008,53(4): 366-381. doi: 10.4050/JAHS.53.366
    [12] LEISHMAN J G. Aerodynamic performance considerations in the design of a coaxial proprotor[J]. Journal of the American Helicopter Society,2009,54(1): 12005.1-12005.14.
    [13] WHITMORE S A,MERRILL R S. Nonlinear large angle solutions of the blade element momentum theory propeller equations[J]. Journal of Aircraft,2012,49(4): 1126-1134. doi: 10.2514/1.C031645
    [14] STAHLHUT C. Aerodynamic design optimization of proprotors for convertible-rotor concepts[D]. College Park,US: United States University of Maryland,College Park,2012.
    [15] KHAN W,NAHON M. A propeller model for general forward flight conditions[J]. International Journal of Intelligent Unmanned Systems,2015,3(2/3): 72-92. doi: 10.1108/IJIUS-06-2015-0007
    [16] 范中允,周洲,祝小平,等. 高鲁棒性的螺旋桨片条理论非线性修正方法[J]. 航空学报,2018,39(8): 121869. FAN Zhongyun,ZHOU Zhou,ZHU Xiaoping,et al. High-robustness nonlinear-modification method for propeller blade element momentum theory[J]. Acta Aeronautica et Astronautica Sinica,2018,39(8): 121869. (in Chinese

    FAN Zhongyun, ZHOU Zhou, ZHU Xiaoping, et al. High-robustness nonlinear-modification method for propeller blade element momentum theory[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 121869. (in Chinese)
    [17] AULD D J. Blade element theory for propellers[EB/OL]. (2015-11-15)[2021-07-04]. http://www.aerodynamics4students.com/propulsion/blade-element-propeller-theory.php
    [18] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006.
    [19] LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press,2006: 36-43.
    [20] HOUGHTON E L,CARPENTER P W. Aerodynamics for engineering students[M]. 5th ed. Oxford: Butterworth/Heinemann,2003.
    [21] GLAUERT H. Airplane propellers[M]. Berlin,Heidelberg: Springer,1935: 265-269.
    [22] VALKOV T V. Aerodynamic loads computation on coaxial hingeless helicopter rotors[R]. AIAA1990-70,1990.
    [23] JOHNSON W. Helicopter theory[M]. New York,US: Dover Publications INC,Courier Corporation,2012: 74-76.
    [24] BRAMWELL A R S,DONE G,BALMFORD D. Rotor aerodynamics in axial flight[M]. Amsterdam: Elsevier,2000: 33-76.
    [25] CARNAHAN B,LUTHER H A,WILKES J O. Applied numerical methods[M]. New York: Wiley,1969.
    [26] ZHAO Qijun,ZHAO Guoqing,WANG Bo,et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics,2018,31(2): 214-224. doi: 10.1016/j.cja.2017.10.005
    [27] STACK J. Tests of airfoils designed to delay the compressibility burble[R]. NACA-TR-763,1943.
    [28] LADSON C L. Chordwise pressure distributions over several NACA 16-series airfoils at transonic Mach numbers up to 1.25[R]. NASA-MEMO-6-1-59L,1959.
    [29] EVANS A J,LINER G. A wind-tunnel investigation of the aerodynamic characteristics of a full-scale supersonic-type three-blade propeller at Mach numbers to 0.96[R]. NACA-RM-L53F01,1953.
    [30] HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor[R]. NACA Technical Note 2318,1951.
    [31] PLATT R J,SHUMAKER R A. Investigation of the NACA 3-(3)(05)-05 eight-blade dual-rotating propeller at forward Mach numbers to 0.925[R]. NACA RM L50D21,1950.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  117
  • HTML浏览量:  61
  • PDF量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2023-12-08

目录

    /

    返回文章
    返回