留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷注位置对多组分燃料超燃冲压发动机燃烧的影响

滑远帆 李世鹏 王宁飞 于文浩 马源辰

滑远帆, 李世鹏, 王宁飞, 等. 喷注位置对多组分燃料超燃冲压发动机燃烧的影响[J]. 航空动力学报, 2024, 39(5):20210569 doi: 10.13224/j.cnki.jasp.20210569
引用本文: 滑远帆, 李世鹏, 王宁飞, 等. 喷注位置对多组分燃料超燃冲压发动机燃烧的影响[J]. 航空动力学报, 2024, 39(5):20210569 doi: 10.13224/j.cnki.jasp.20210569
HUA Yuanfan, LI Shipeng, WANG Ningfei, et al. Influence of injection position on combustion of multi-component fuel scramjet[J]. Journal of Aerospace Power, 2024, 39(5):20210569 doi: 10.13224/j.cnki.jasp.20210569
Citation: HUA Yuanfan, LI Shipeng, WANG Ningfei, et al. Influence of injection position on combustion of multi-component fuel scramjet[J]. Journal of Aerospace Power, 2024, 39(5):20210569 doi: 10.13224/j.cnki.jasp.20210569

喷注位置对多组分燃料超燃冲压发动机燃烧的影响

doi: 10.13224/j.cnki.jasp.20210569
详细信息
    作者简介:

    滑远帆(1997-),男,助理工程师,硕士,主要从事液体冲压发动机、液体火箭发动机设计与燃烧方面的研究

    通讯作者:

    李世鹏(1973-),男,教授、博士生导师,博士,主要从事固体火箭发动机设计与仿真技术、水下喷气推进技术和固体姿轨控动力技术方面的研究。E-mail:lsp@bit.edu.cn

  • 中图分类号: V235.21

Influence of injection position on combustion of multi-component fuel scramjet

  • 摘要:

    为研究含铝高能量密度碳氢燃料在超燃冲压发动机中的燃烧组织细节,使用离散相模型(DPM)和简化反应机理对不同燃料喷注位置下燃烧流动过程进行了数值模拟。结果表明:使用七喷注器从上壁面进行燃料喷注时,出口截面处温度场形成了以近上壁面轴线为中心低温-升至最高温-降至较低温度的分布特征,氧浓度在中心处的含量也较低,这都将影响燃烧反应的进程。在研究工况下随着喷注器与燃烧室入口距离增大,燃料比冲呈先增大后减小的变化趋势,在研究工况中实现燃料最大比冲11092 m/s,可以通过改变燃料从上壁面喷入燃烧室的喷注位置和优化喷注器布局等提升燃烧室性能,优化后最大比冲提升了12.68%。

     

  • 图 1  七喷注器分布

    Figure 1.  Distribution of seven injectors

    图 2  燃烧室几何模型

    Figure 2.  Combustion chamber geometry model

    图 3  壁面压力分布曲线的数值模拟和实验结果

    Figure 3.  Numerical simulation and experimental results of wall pressure distribution curve

    图 4  凹腔附近燃烧室壁面温度云图

    Figure 4.  Temperature contour of the combustion chamber wall near the cavity

    图 5  燃烧室对称截面凹腔附近温度云图

    Figure 5.  Temperature contour near the cavity of the symmetrical section of the combustion chamber

    图 6  凹腔附近燃烧室壁面速度云图

    Figure 6.  Velocity contour of the combustion chamber wall near the cavity

    图 7  燃烧室对称截面凹腔附近速度云图

    Figure 7.  Velocity contour near the cavity of the symmetrical section of the combustion chamber

    图 8  局部流线图

    Figure 8.  Partial streamline diagram

    图 9  凹腔内部分组分质量分数分布图

    Figure 9.  Distribution of mass fractions of some components in the cavity

    图 10  燃料喷注下游燃烧室壁面温度云图

    Figure 10.  Temperature contour of the combustion chamber wall downstream of the fuel injection

    图 11  距离燃烧室入口截面不同距离及出口截面温度云图

    Figure 11.  Temperature contour of different distances from the entrance section of the combustion chamber and the exit section

    图 12  与燃烧室底部壁面不同距离水平截面O2质量分数分布图

    Figure 12.  O2 mass fraction distribution in horizontal section at different distances from the bottom wall of the combustion chamber

    图 13  与燃烧室底部壁面不同距离水平截面CO质量分数分布图

    Figure 13.  CO mass fraction distribution in horizontal section at different distances from the bottom wall of the combustion chamber

    图 14  与燃烧室底部壁面不同距离水平截面CO2质量分数分布图

    Figure 14.  CO2 mass fraction distribution of horizontal cross section at different distances from the bottom wall of the combustion chamber

    图 15  不同位置喷注燃料时下壁面压力

    Figure 15.  Pressure on the bottom wall when fuel is injected at different positions

    图 16  从与入口截面不同距离喷注燃料时凹腔温度图

    Figure 16.  Temperature diagram of the cavity when fuel is injected from a different distance from the inlet section

    图 17  不同喷注位置燃料和氧气消耗率及出口组分比较

    Figure 17.  Comparison of fuel and oxygen consumption rates and outlet components at different injection positions

    图 18  不同喷注位置下的比冲

    Figure 18.  Specific impulse under different injection positions

    图 19  调整后七喷注器布局

    Figure 19.  Layout of the seven injectors after adjustment

    图 20  距离为L1=150 mm、L2=160 mm时燃烧室底部壁面和凹腔局部的温度

    Figure 20.  Temperature of the bottom wall of the combustion chamber and the local cavity when the distance is L1=150 mm and L2=160 mm

    图 21  改变喷注布局前后燃料和氧气消耗率对比

    Figure 21.  Comparison of fuel and oxygen consumption rates before and after changing the injection layout

    图 22  改变喷注布局前后出口组分对比

    Figure 22.  Comparison of outlet components before and after changing the injection layout

    图 23  改变喷注布局前后比冲对比

    Figure 23.  Comparison of specific impulse before and after changing the injection layout

    表  1  C10H16的10组分11步反应机理

    Table  1.   The 10-component 11-step reaction mechanism of C10H16

    编号 反应
    1 C10H16+O2→10CH+6H+O2
    2 CH+O2→CO+OH
    3 CH+O→CO+H
    4 2H$\longleftrightarrow $H2
    5 H2+O2$\longleftrightarrow $H2O+O
    6 H2+O$\longleftrightarrow $H+OH
    7 H+O2$\longleftrightarrow $O+OH
    8 H2O+O2$\longleftrightarrow $2O+H2O
    9 CO+OH$\longleftrightarrow $CO2+H
    10 CO+H2O$\longleftrightarrow $CO2+H2
    11 CO+H2+O2$\longleftrightarrow $CO2+H2O
    下载: 导出CSV

    表  2  实验入口参数

    Table  2.   Experimental entrance parameters

    马赫数总温/K总压/MPa空气总质量
    流率/(kg/s)
    燃料
    当量比$ \varphi $
    2.017000.700.600.73
    下载: 导出CSV

    表  3  两排燃料喷注器与燃烧室入口截面的距离

    Table  3.   Distance between the two rows of fuel injectors and the entrance section of the combustion chamber

    距离/mm123456
    L190110130150170190
    L2100120140160180200
    下载: 导出CSV
  • [1] GORDON L J,LEE J B. Metals as fuels in multicomponent propellants[J]. ARS Journal,1962,32(4): 600-606. doi: 10.2514/8.6078
    [2] YOUNG G. Metallic nanoparticles as fuel additives in airbreathing combustion[D]. Washington: University of Maryland,2007.
    [3] PALASZEWSKI B,JURNS J,BREISACHER K,et al. Metallized gelled propellants combustion experiments in a pulse detonation engine[R]. AIAA 2004-4191,2004.
    [4] MORDOSKY J,ZHANG B,KUO K,et al. Spray combustion of gelled RP-1 propellants containing nano-sized aluminum particles in rocket engine conditions[R]. AIAA 2001-3274,2021.
    [5] LUO Yu,XU Xu,ZOU Jijun,et al. Combustion of JP-10-based slurry with nanosized aluminum additives[J]. Journal of Propulsion and Power,2016,32(5): 1167-1177. doi: 10.2514/1.B35969
    [6] 邵昂,朱韶华,鄂秀天凤,等. 含铝金属化浆体推进剂火箭发动机燃烧性能试验研究[J]. 推进技术,2018,39(7): 1650-1659. SHAO Ang,ZHU Shaohua,E Xiutianfeng,et al. Experimental study on combustion characteristic of rocket engine based on slurry propellant containing aluminum particles[J]. Journal of Propulsion Technology,2018,39(7): 1650-1659. (in Chinese

    SHAO Ang, ZHU Shaohua, E Xiutianfeng, et al. Experimental study on combustion characteristic of rocket engine based on slurry propellant containing aluminum particles[J]. Journal of Propulsion Technology, 2018, 39(7): 1650-1659. (in Chinese)
    [7] 台经华,卓长飞,蒋显松,等. 粉末/液体燃料组合发动机燃烧性能数值研究[J]. 兵器装备工程学报,2020,41(11): 134-140. TAI Jinghua,ZHUO Changfei,JIANG Xiansong,et al. Numerical simulation investigation on combustion performance of powder/liquid fuel combined ramjet[J]. Journal of Ordnance Equipment Engineering,2020,41(11): 134-140. (in Chinese

    TAI Jinghua, ZHUO Changfei, JIANG Xiansong, et al. Numerical simulation investigation on combustion performance of powder/liquid fuel combined ramjet[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11): 134-140. (in Chinese)
    [8] 鄂秀天凤. 基于亲油性纳米颗粒的高密度悬浮燃料研究[D]. 天津: 天津大学,2015. E Xiutianfeng. High-density suspension fuels containing oil-dispersable nanoparticles[D]. Tianjin: Tianjin University,2015. (in Chinese

    E Xiutianfeng. High-density suspension fuels containing oil-dispersable nanoparticles[D]. Tianjin: Tianjin University, 2015. (in Chinese)
    [9] 鄂秀天凤,彭浩,邹吉军,等. 含有纳米铝颗粒的高密度悬浮燃料研究[J]. 推进技术,2016,37(5): 974-978. E Xiutianfeng,PENG Hao,ZOU Jijun,et al. Study on Al NPs-containing suspension as high-density liquid fuel[J]. Journal of Propulsion Technology,2016,37(5): 974-978. (in Chinese

    E Xiutianfeng, PENG Hao, ZOU Jijun, et al. Study on Al NPs-containing suspension as high-density liquid fuel[J]. Journal of Propulsion Technology, 2016, 37(5): 974-978. (in Chinese)
    [10] 鄂秀天凤,张磊,谢君健,等. 添加纳米铝的高密度悬浮燃料点火性能[J]. 含能材料,2018,26(4): 290-296. E Xiutianfeng,ZHANG Lei,XIE Junjian,et al. Ignition performance of high-density suspension fuel of adding Al NPs[J]. Chinese Journal of Energetic Materials,2018,26(4): 290-296. (in Chinese

    E Xiutianfeng, ZHANG Lei, XIE Junjian, et al. Ignition performance of high-density suspension fuel of adding Al NPs[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 290-296. (in Chinese)
    [11] E Xiutianfeng,PAN Lun,WANG Fang,et al. Al-nanoparticle-containing nanofluid fuel: synthesis,stability,properties,and propulsion performance[J]. Industrial & Engineering Chemistry Research,2016,55(10): 2738-2745.
    [12] E Xiutianfeng,ZHI Xiaomin,ZHANG Yamin,et al. Jet fuel containing ligand-protecting energetic nanoparticles: a case study of boron in JP-10[J]. Chemical Engineering Science,2015,129: 9-13. doi: 10.1016/j.ces.2015.02.018
    [13] E Xiutianfeng,ZHI Xiaomin,ZHANG Xiangwen,et al. Ignition and combustion performances of high-energy-density jet fuels catalyzed by Pt and Pd nanoparticles[J]. Energy & Fuels,2018,32(2): 2163-2169.
    [14] 刘毅,鄂秀天凤,李智欣,等. 高能量密度液体燃料的火箭发动机燃烧性能研究[J]. 推进技术,2019,40(5): 1169-1176. LIU Yi,E Xiutianfeng,LI Zhixin,et al. Study on combustion performance of high-energy-density liquid fuels in rocket engine[J]. Journal of Propulsion Technology,2019,40(5): 1169-1176. (in Chinese

    LIU Yi, E Xiutianfeng, LI Zhixin, et al. Study on combustion performance of high-energy-density liquid fuels in rocket engine[J]. Journal of Propulsion Technology, 2019, 40(5): 1169-1176. (in Chinese)
    [15] JIN Yushu,DOU Suyi,YANG Qingchun,et al. Performance characteristics of a scramjet engine using JP-10 fuel containing aluminum nanoparticles[J]. Acta Astronautica,2021,185: 70-77. doi: 10.1016/j.actaastro.2021.04.044
    [16] 吴先宇,李小山,丁猛,等. 超燃冲压发动机燃烧室构型对燃烧室性能影响[J]. 推进技术,2008,29(3): 300-305. WU Xianyu,LI Xiaoshan,DING Meng,et al. Effects of scramjet combustor configuration on combustor performance[J]. Journal of Propulsion Technology,2008,29(3): 300-305. (in Chinese

    WU Xianyu, LI Xiaoshan, DING Meng, et al. Effects of scramjet combustor configuration on combustor performance[J]. Journal of Propulsion Technology, 2008, 29(3): 300-305. (in Chinese)
    [17] 邓维鑫. 宽范围马赫数超燃冲压发动机燃烧组织技术研究[D]. 成都: 西南交通大学,2013. DENG Weixin. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu: Southwest Jiaotong University,2013. (in Chinese

    DENG Weixin. Research on combustion organizing technology of scramjet in wide range Mach number[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
    [18] 李凡,汪洪波,孙明波,等. 两种优化组合式燃料喷注方案的凹腔稳焰特性实验研究[J]. 固体火箭技术,2021,44(2): 152-159. LI Fan,WANG Hongbo,SUN Mingbo,et al. Experiments on flame stabilization of two combined fuel injection schemes in a cavity-based combustor[J]. Journal of Solid Rocket Technology,2021,44(2): 152-159. (in Chinese

    LI Fan, WANG Hongbo, SUN Mingbo, et al. Experiments on flame stabilization of two combined fuel injection schemes in a cavity-based combustor[J]. Journal of Solid Rocket Technology, 2021, 44(2): 152-159. (in Chinese)
    [19] ECKER T,KARL S,HANNEMANN K. Modeling of aluminum particle combustion in solid rocket combustion chambers[R]. AIAA 2017-4781,2017.
    [20] CATOIRE L,LEGENDRE J F,GIRAUD M. Kinetic model for aluminum-sensitized ram accelerator combustion[J]. Journal of Propulsion and Power,2003,19(2): 196-202. doi: 10.2514/2.6118
    [21] LIU Bing,HE G,QIN F,et al. Simulation of kerosene fueled RBCC Engine based on skeletal mechanism[R]. AIAA 2017-2288,2017.
    [22] WANG T S. Thermophysics characterization of kerosene combustion[J]. Journal of Thermophysics and Heat Transfer,2001,15(2): 140-147. doi: 10.2514/2.6602
    [23] JIA Boqi,FU Qingfei,XU Xu,et al. Spray characteristics of Al-nanoparticle-containing nanofluid fuel in a self-excited oscillation injector[J]. Fuel,2021,290: 120057. doi: 10.1016/j.fuel.2020.120057
    [24] 王绍卿. 组合发动机多种燃料和多种氧化剂的当量比计算法[J]. 推进技术,1992,13(3): 41-46,40. WANG Shaoqing. Calculation methods on equivelence ratio of multi-propellant for propulsion system[J]. Journal of Propulsion Technology,1992,13(3): 41-46,40. (in Chinese

    WANG Shaoqing. Calculation methods on equivelence ratio of multi-propellant for propulsion system[J]. Journal of Propulsion Technology, 1992, 13(3): 41-46, 40. (in Chinese)
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  50
  • HTML浏览量:  22
  • PDF量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2023-12-22

目录

    /

    返回文章
    返回