留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料涡轮轴结构损伤演化及失效机理

沙云东 黄靖轩 骆丽 白旭

沙云东, 黄靖轩, 骆丽, 等. 复合材料涡轮轴结构损伤演化及失效机理[J]. 航空动力学报, 2024, 39(5):20210572 doi: 10.13224/j.cnki.jasp.20210572
引用本文: 沙云东, 黄靖轩, 骆丽, 等. 复合材料涡轮轴结构损伤演化及失效机理[J]. 航空动力学报, 2024, 39(5):20210572 doi: 10.13224/j.cnki.jasp.20210572
SHA Yundong, HUANG Jingxuan, LUO Li, et al. Damage evolution and failure mechanism of composite turbine shaft structure[J]. Journal of Aerospace Power, 2024, 39(5):20210572 doi: 10.13224/j.cnki.jasp.20210572
Citation: SHA Yundong, HUANG Jingxuan, LUO Li, et al. Damage evolution and failure mechanism of composite turbine shaft structure[J]. Journal of Aerospace Power, 2024, 39(5):20210572 doi: 10.13224/j.cnki.jasp.20210572

复合材料涡轮轴结构损伤演化及失效机理

doi: 10.13224/j.cnki.jasp.20210572
基金项目: 中国航空发动机集团产学研合作项目(HFZL2018CXY019)
详细信息
    作者简介:

    沙云东(1966-),男,教授,博士,主要从事航空发动机强度、振动及噪声方面的研究

  • 中图分类号: V232.2

Damage evolution and failure mechanism of composite turbine shaft structure

  • 摘要:

    针对连续纤维增强复合材料涡轮轴结构损伤演化及失效机理分析,基于宏-细观力学跨尺度分析方法,建立了与轴结构试验件尺寸相符合的有限元仿真计算模型及细观力学代表体积元(RVE)模型,预测轴结构的损伤演化并分析其失效机理。反向扭矩下,[45]6轴结构的损伤始于界面开裂,裂纹向两侧钛合金扩展,钛合金的剪切变形最终带动纤维的断裂;正向扭矩下,[45]10轴结构的损伤始于基体损伤,断口两侧钛合金相互挤压摩擦,最终将纤维剪断。开展复合材料失效模式验证试验,通过声发射及扫描电镜技术,实现对失效过程中不同失效模式的判别。将仿真结果与试验结果进行对比验证,验证了模型和方法的有效性。模拟涡轮轴结构在扭转载荷下的损伤演化过程及失效机理,预测失效强度。结果表明:0°和90°铺层时扭转强度最低,45°铺层时扭转强度最高,提高近3倍。本文研究提出的预测模型及分析结论为纤维增强复合材料的设计和应用提供依据。

     

  • 图 1  纤维增强复合材料轴结构研究尺度

    Figure 1.  Fiber reinforced composite shaft structure research scale

    图 2  四边形排列的RVE模型的二维几何表示

    Figure 2.  Two dimensional periodic structure of RVE model of square array

    图 3  界面单元本构关系

    Figure 3.  Constitutive relation of interface layer

    图 4  试验系统平面图

    Figure 4.  Experiment site plan

    图 5  安装状态

    Figure 5.  Installation diagram

    图 6  试验件尺寸(单位:mm)

    Figure 6.  Dimensions of shafts (unit: mm)

    图 7  轴结构模型建立

    Figure 7.  Dangerous position

    图 8  RVE模型网格划分

    Figure 8.  Mesh generation of RVE model

    图 9  [45]6复合材料轴界面损伤模型演化

    Figure 9.  Evolution of [45]6 composite turbine shaft interface damage model

    图 10  [45]6复合材料轴基体损伤模型演化

    Figure 10.  Evolution of [45]6 composite turbine shaft matrix damage model

    图 11  [45]6复合材料轴纤维损伤模型演化

    Figure 11.  Evolution of [45]6 composite turbine shaft fiber damage model

    图 12  [45]10复合材料轴基体损伤模型演化

    Figure 12.  Evolution of [45]10 composite turbine shaft matrix damage model

    图 13  [45]10复合材料轴纤维损伤模型演化

    Figure 13.  Evolution of [45]10 composite turbine shaft fiber damage model

    图 14  低压涡轮轴结构有限元模型

    Figure 14.  Finite element model of low pressure turbine shaft structure

    图 15  低压涡轮轴结构网格划分

    Figure 15.  Mesh generation of low pressure turbine shaft structure

    图 16  低压涡轮轴扭转角-转矩图

    Figure 16.  Torsional angle-torque of low pressure turbine shaft

    图 17  低压涡轮轴基体损伤模型演化

    Figure 17.  Evolution of low pressure turbine shaft matrix damage model

    图 18  低压涡轮轴纤维损伤模型演化

    Figure 18.  Evolution of low pressure turbine shaft fiber damage model

    图 19  低压涡轮轴分层损伤模型演化

    Figure 19.  Evolution of low pressure turbine shaft stratified damage model

    图 20  不同铺层角度下低压涡轮轴扭转角-扭矩

    Figure 20.  Torsional angle-torque of low pressure turbine shaft at different layer degrees

    图 21  不同铺层角度的扭转强度

    Figure 21.  Torsional strength at different fiber orientation

    表  1  轴结构断裂试验结果

    Table  1.   Fracture experiment results of shaft structure

    轴结构 扭矩方向 试验值/(N·m) 断口状态
    [45]6 反向扭矩 −11812 45°和90°方向出现裂纹
    [45]10 正向扭矩 10418 90°方向出现裂纹
    下载: 导出CSV

    表  2  轴结构失效模式试验结果

    Table  2.   Failure mode experiment results of shaft structure

    轴结构 声发射信号监测 断口切割
    方案
    断口形貌宏观观测 电镜扫描细观观测
    [45]6
    [45]10
    下载: 导出CSV

    表  3  材料参数

    Table  3.   Material parameters

    参数 材料
    SiC/TC4 TC4
    E/GPa E1 234 122.5
    E2 187
    E3 187
    ν ν12 0.23 0.3
    ν23 0.27
    ν13 0.23
    G/GPa G12 64.38
    G23 71.69
    G13 64.38
    下载: 导出CSV

    表  4  承载能力计算结果与试验结果

    Table  4.   Calculation results and experiment results of bearing capacity

    轴结构 仿真值/(N·m) 试验值/(N·m) 误差/% 载荷描述
    [45]6 −10282.00 −11812.00 12.9 反向扭转
    [45]10 9601.85 10418.00 7.8 正向扭转
    下载: 导出CSV

    表  5  低压涡轮轴基体失效分析

    Table  5.   Matrix failure analysis of low pressure turbine shaft

    扭转角/(°) 扭矩/(N·m) 失效模式
    2.41 2707.75 层3轴颈处失效
    3.05 3330.89 层5轴颈处失效
    3.21 3475.78 层1轴颈处失效
    5.45 5513.93 层3失效开始向Ⅱ扩展
    6.58 6566.40 层3失效已扩展至Ⅱ段,层1、
    层5失效已扩展至Ⅰ段
    7.06 2156.44 层2、层4失效由轴颈处向
    Ⅱ段扩展
    7.38 361.268 层1、层5失效扩展至Ⅱ段前端
    下载: 导出CSV

    表  6  低压涡轮轴纤维失效分析

    Table  6.   Fiber failure analysis of low pressure turbine shaft

    扭转角/(°) 扭矩/(N·m) 失效模式
    2.73 3047.13 层3轴颈处失效,并向Ⅰ段扩展
    5.61 5674.12 层3失效已扩展至Ⅰ段,并向Ⅱ段扩展
    6.58 6566.40 层4轴颈处失效,并同时沿Ⅰ、Ⅱ段扩展
    6.74 6455.94 层2轴颈处失效,并同时沿Ⅰ、Ⅱ段扩展
    7.06 2156.44 层1、层5轴颈处失效,并同时沿Ⅰ、Ⅱ段扩展
    7.38 361.268 各层出现不同程度的失效
    下载: 导出CSV

    表  7  低压涡轮轴分层失效分析

    Table  7.   Stratified failure analysis of low pressure turbine shaft

    扭转角/(°) 扭矩/(N·m) 失效模式
    6.90 5022.39 层2、层3轴颈处失效
    7.06 2156.44 各层出现不同程度失效
    7.38 361.268 各层失效向Ⅰ、Ⅱ段扩展
    下载: 导出CSV
  • [1] 梁春华. 连续纤维增强的金属基复合材料部件在航空涡扇发动机上的应用[J]. 航空制造技术,2009,52(15): 32-35. LIANG Chunhua. Application of continuous fiber reinforced metal matrix composite component on turbofan aeroengine[J]. Aeronautical Manufacturing Technology,2009,52(15): 32-35. (in Chinese

    LIANG Chunhua. Application of continuous fiber reinforced metal matrix composite component on turbofan aeroengine[J]. Aeronautical Manufacturing Technology, 2009, 52(15): 32-35. (in Chinese)
    [2] 沙云东,贾秋月,骆丽,等. 连续纤维增强金属基复合材料涡轮轴结构承扭特性分析[J]. 航空动力学报,2016,31(6): 1377-1384. SHA Yundong,JIA Queyue,LUO Li,et al. Analysis on torsional feature of continuous fiber reinforced metal matrix composite turbine shaft[J]. Journal of Aerospace Power,2016,31(6): 1377-1384. (in Chinese

    SHA Yundong, JIA Queyue, LUO Li, et al. Analysis on torsional feature of continuous fiber reinforced metal matrix composite turbine shaft[J]. Journal of Aerospace Power, 2016, 31(6): 1377-1384. (in Chinese)
    [3] 沙云东,陈祎航,郝燕平,等. 纤维增强复合材料涡轮轴结构疲劳寿命预测[J]. 航空动力学报,2017,32(4): 769-779. SHA Yundong,CHEN Yihang,HAO Yanping,et al. Fatigue life prediction of fiber reinforced composites turbine shaft structure[J]. Journal of Aerospace Power,2017,32(4): 769-779. (in Chinese

    SHA Yundong, CHEN Yihang, HAO Yanping, et al. Fatigue life prediction of fiber reinforced composites turbine shaft structure[J]. Journal of Aerospace Power, 2017, 32(4): 769-779. (in Chinese)
    [4] 骆丽,沙云东,郝燕平. 纤维增强涡轮轴结构失效模式分析方法及试验验证[J]. 航空动力学报,2020,35(7): 1425-1436. LUO Li,SHA Yundong,HAO Yanping. Method of failure mode analysis and test verification for fiber reinforced composites turbo-shaft structure[J]. Journal of Aerospace Power,2020,35(7): 1425-1436. (in Chinese

    LUO Li, SHA Yundong, HAO Yanping. Method of failure mode analysis and test verification for fiber reinforced composites turbo-shaft structure[J]. Journal of Aerospace Power, 2020, 35(7): 1425-1436. (in Chinese)
    [5] HINTON M J,SODEN P D. Predicting failure in composite laminates: the background to the exercise[J]. Composites Science and Technology,1998,58(7): 1001-1010. doi: 10.1016/S0266-3538(98)00074-8
    [6] SODEN P D,HINTON M J,KADDOUR A S. A comparison of the predictive capabilities of current failure theories for composite laminates[J]. Composites Science and Technology,1998,58(7): 1225-1254. doi: 10.1016/S0266-3538(98)00077-3
    [7] KARL S. World wide failure exercise on failure prediction in composites[J]. Composites Science and Technology,2002,62(12/13): 1479.
    [8] HINTON M J,KADDOUR A S,SODEN P D. A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence[J]. Composites Science and Technology,2004,64(3/4): 549-588.
    [9] 陈滨琦,曾建江,王玉青,等. 三向受压下单向复合材料层板破坏的细观力学分析[J]. 复合材料学报,2017,34(4): 573-583. CHEN Binqi,ZENG Jianjiang,WANG Yuqing,et al. Micro-mechanics analysis of damage for unidirectional composite laminates under tri-axial compression[J]. Acta Materiae Compositae Sinica,2017,34(4): 573-583. (in Chinese

    CHEN Binqi, ZENG Jianjiang, WANG Yuqing, et al. Micro-mechanics analysis of damage for unidirectional composite laminates under tri-axial compression[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 573-583. (in Chinese)
    [10] QU Jianmin,CHERKAOUI M. Fundamentals of Micromechanics of Solids[M]. New York : John Wiley & Sons,2006: 154-195.
    [11] AVILA A F. An integrated methodology and formulations for micro/macro modeling and analysis of metal matrix composites[D]. Twin Cities,US: University of Minnesota,1997.
    [12] SUN C T,VAIDYA R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology,1996,56(2): 171-179. doi: 10.1016/0266-3538(95)00141-7
    [13] PADHEE S,HARURSAMPATH D. Micromechanical tailoring of composite structure for optimum material properties[R]. AIAA 2010-3056,2010.
    [14] AMBUR D R,JAUNKY N,HILBURGER M,et al. Progressive failure analyses of compression-loaded composite curved panels with and without cutouts[J]. Composite Structures,2004,65(2): 143-155. doi: 10.1016/S0263-8223(03)00184-3
    [15] HYDE T H,PUNYONG K,BECKER A A. Experimental failure investigation for a titanium metal matrix composite with +45° and ±45° fibre orientations[J]. Proceedings of the Institution of Mechanical Engineers,Part L: Journal of Materials: Design and Applications,2015,229(1): 51-63.
    [16] SEVKAT E,TUMER H. Residual torsional properties of composite shafts subjected to impact loadings[J]. Materials & Design,2013,51: 956-967.
    [17] 沙云东,田建光,丁光耀,等. SiC/TC4复合材料轴结构力学性能分析及试验验证[J]. 推进技术,2018,39(11): 2556-2563. SHA Yundong,TIAN Jianguang,DING Guangyao,et al. Mechanical properties analysis and experimental verification of SiC/TC4 composite shaft structure[J]. Journal of Propulsion Technology,2018,39(11): 2556-2563. (in Chinese

    SHA Yundong, TIAN Jianguang, DING Guangyao, et al. Mechanical properties analysis and experimental verification of SiC/TC4 composite shaft structure[J]. Journal of Propulsion Technology, 2018, 39(11): 2556-2563. (in Chinese)
    [18] 沙云东,贾秋月,骆丽,等. 纤维增强复合材料轴结构铺层方案优化设计[J]. 航空动力学报,2016,31(12): 2933-2940. SHA Yundong,JIA Queyue,LUO Li,et al. Optimization design for laminate scheme of fiber reinforced composite shaft[J]. Journal of Aerospace Power,2016,31(12): 2933-2940. (in Chinese

    SHA Yundong, JIA Queyue, LUO Li, et al. Optimization design for laminate scheme of fiber reinforced composite shaft[J]. Journal of Aerospace Power, 2016, 31(12): 2933-2940. (in Chinese)
    [19] 刘文博,张洪涛,王荣国,等. 用有限元法对CF/PPEK热塑性复合材料等效模量计算[J]. 哈尔滨工业大学学报,2006,38(4): 535-537,621. LIU Wenbo,ZHANG Hongtao,WANG Rongguo,et al. Calculation of CF/PPEK composites equivalent modulus by FEM[J]. Journal of Harbin Institute of Technology,2006,38(4): 535-537,621. (in Chinese

    LIU Wenbo, ZHANG Hongtao, WANG Rongguo, et al. Calculation of CF/PPEK composites equivalent modulus by FEM[J]. Journal of Harbin Institute of Technology, 2006, 38(4): 535-537, 621. (in Chinese)
    [20] JIMENEZ S,DUDDU R. On the parametric sensitivity of cohesive zone models for high-cycle fatigue delamination of composites[J]. International Journal of Solids and Structures,2016,82: 111-124. doi: 10.1016/j.ijsolstr.2015.10.015
    [21] KADDOUR A S,HINTON M J. Input data for test cases used in benchmarking triaxial failure theories of composites[J]. Journal of Composite Materials,2012,46(19/20): 2295-2312.
    [22] CRICRÌ G,LUCIANO R. Homogenised properties of composite materials in large deformations[J]. Composite Structures,2013,103: 9-17. doi: 10.1016/j.compstruct.2013.03.015
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  43
  • HTML浏览量:  21
  • PDF量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 网络出版日期:  2024-01-06

目录

    /

    返回文章
    返回