留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于吸力面叠加厚度的超跨声叶型优化设计

刘帅鹏 耿少娟 金芸 李鑫龙 张宏武

刘帅鹏, 耿少娟, 金芸, 等. 基于吸力面叠加厚度的超跨声叶型优化设计[J]. 航空动力学报, 2024, 39(5):20210577 doi: 10.13224/j.cnki.jasp.20210577
引用本文: 刘帅鹏, 耿少娟, 金芸, 等. 基于吸力面叠加厚度的超跨声叶型优化设计[J]. 航空动力学报, 2024, 39(5):20210577 doi: 10.13224/j.cnki.jasp.20210577
LIU Shuaipeng, GENG Shaojuan, JIN Yun, et al. Supersonic and transonic airfoil optimization design based on superimposing thickness on suction surface[J]. Journal of Aerospace Power, 2024, 39(5):20210577 doi: 10.13224/j.cnki.jasp.20210577
Citation: LIU Shuaipeng, GENG Shaojuan, JIN Yun, et al. Supersonic and transonic airfoil optimization design based on superimposing thickness on suction surface[J]. Journal of Aerospace Power, 2024, 39(5):20210577 doi: 10.13224/j.cnki.jasp.20210577

基于吸力面叠加厚度的超跨声叶型优化设计

doi: 10.13224/j.cnki.jasp.20210577
基金项目: 国家科技重大专项(2017-Ⅱ-0007-0021,2017-Ⅱ-0006-0020)
详细信息
    作者简介:

    刘帅鹏(1997-),男,博士生,主要从事叶轮机械气动热力学研究

    通讯作者:

    耿少娟(1980-),女,副研究员,博士,主要从事叶轮机械气动热力学研究。E-mail:gengsj@iet.cn

  • 中图分类号: V232.4

Supersonic and transonic airfoil optimization design based on superimposing thickness on suction surface

  • 摘要:

    为提高轴流压气机叶型优化设计水平,提出了一种基于吸力面叠加厚度分布的参数化造型方法,结合基于Kriging代理模型与差分进化的代理优化方法开发了一套优化设计平台,并将吸力面控制参数作为优化变量,对某跨声与超声叶型进行性能优化。结果表明:基于吸力面叠加厚度分布的叶片造型方法能对叶型进行较好的表达,并成功应用在优化设计平台中。跨声、超声优化叶型在设计点损失分别降低了10.66%与7.4%。分析表明:跨声优化叶型的主要特征是吸力面型线前缘附近型线弯度降低,使得激波强度降低,激波损失与边界层损失降低,同时中后部位置处的负荷增大,扩张通道扩压能力增强;超声叶型优化由于边界层影响更显著,因此还需要更多考虑吸力面扩张通道区域型线;叶型喉部位置与喉部宽度会影响堵塞冲角的变化。

     

  • 图 1  三阶Bezier曲线及其控制点

    Figure 1.  Cubic Bezier curve and its control points

    图 2  吸力面控制点及辅助点

    Figure 2.  Control points and auxiliary geometry points of suction surface

    图 3  厚度分布示意图

    Figure 3.  Schematic diagram of thickness distributions

    图 4  CFD与实验结果叶片表面压力系数对比

    Figure 4.  Comparison of blade pressure coefficient between CFD and experiment result

    图 5  叶型A和重构叶型几何对比

    Figure 5.  Comparison of geometry between baseline A and reconstructive airfoil

    图 6  叶型A和重构叶型等熵马赫数分布对比

    Figure 6.  Comparison of isentropic Mach number between baseline A and reconstructive airfoil

    图 7  可用冲角范围示意图

    Figure 7.  Schematic diagram of available incidence range

    图 8  气动优化流程示意图

    Figure 8.  Flowchart of aerodynamic optimization process

    图 9  数据库叶型设计点扩散因子-总压损失特性

    Figure 9.  Diffusion factor-total pressure loss characteristics of database airfoils at design condition

    图 10  叶型 A 与优化叶型气动性能特性对比

    Figure 10.  Comparison of aerodynamic characteristics between baseline A and optimized airfoils

    图 11  叶型 A 与优化叶型几何特性对比

    Figure 11.  Comparison of aerodynamic characteristics between baseline A and optimized airfoils

    图 12  叶型 A 和优化叶型设计工况等熵马赫数对比

    Figure 12.  Comparison of geometry characteristics between baseline A and optimized airfoils

    图 13  叶型 A 和 OPT1 叶栅通道设计工况熵变分布对比

    Figure 13.  Comparison of entropy change distribution in cascade channel at design condition between baseline A and OPT1

    图 14  叶型 B 优化叶型气动性能特性对比

    Figure 14.  Comparison of aerodynamic characteristics between baseline B and optimized airfoils

    图 15  优化叶型与叶型 B 几何特性对比

    Figure 15.  Comparison of geometry characteristics between baseline B and optimized airfoils

    图 16  叶型B和优化叶型设计工况等熵马赫数对比

    Figure 16.  Comparison of isentropic Mach number at design condition between baseline B and optimized airfoils

    图 17  叶型B和OPT2叶栅通道设计工况熵变分布对比

    Figure 17.  Comparison of entropy change distribution in cascade channel at design condition between baseline B and OPT2

    表  1  DFVLR叶型设计参数

    Table  1.   Design parameters of the DFVLR cascade

    设计参数 数值
    安装角/(°) 48.51
    弦长/mm 90
    叶型弯角/(°) 14.9
    稠度 1.610
    设计进口马赫数 1.09
    设计进气角/(°) 58.5
    下载: 导出CSV

    表  2  原始叶型设计参数

    Table  2.   Design parameters of the baseline

    参数 叶型A 叶型B
    设计进口马赫数 0.95 1.08
    设计冲角/(°) −0.81 3.21
    安装角/(°) 44.3 59.7
    叶型弯角/(°) 21.3 6.7
    弦长/mm 291 291
    稠度 1.31 1.04
    Re/106 5.3 6.02
    下载: 导出CSV

    表  3  叶型A和重构叶型气动参数对比

    Table  3.   Comparisons of aerodynamic parameters between baseline A and reconstructive airfoil

    参数 叶型A 重构叶型 相对误差/%
    设计进口马赫数 0.95 0.95 0
    设计冲角/(°) −0.81 −0.81 0
    总压损失系数 0.0366 0.0373 1.9
    气流折转角/(°) 12.97 13.00 0.2
    静压比 1.442 1.442 0
    下载: 导出CSV

    表  4  叶型优化参数值及其变化范围

    Table  4.   Optimized parameter values and variation ranges

    参数叶型A叶型B
    原型参数值变化下限变化上限原型参数值变化下限变化上限
    $ {c_{{\text{b1}}}} $0.3610.30.50.1660.080.33
    ${c_{{\text{b2}}}} $/(°)4.242.295.732.911.155.16
    $ {c_{{\text{p}}3}} $0.4560.350.550.5290.40.65
    $ {c_{{\text{p}}1}} $0.7200.60.781.3410.61.4
    $ {c_{{\text{p}}2}} $0.6170.50.650.4430.350.65
    $ {c_{{\text{q}}1}} $2.012.110.751.4
    下载: 导出CSV

    表  5  总压损失系数逐步线性回归结果

    Table  5.   Stepwise linear regression results of total pressure loss coefficient

    叶型 参数 系数 显著性 ${R^2}$ $R_{{\text{adj}}}^2$
    叶型A (常数) 0.033 0 0.873 0.859
    $ {c_{{\text{b1}}}} $ 0.033 0
    $ {c_{{\text{p}}3}} $ −0.015 0
    $ {c_{{\text{b2}}}} $ −0.006 0.007
    叶型B (常数) 0.063 0 0.711 0.698
    $ {c_{{\text{q}}1}} $ −0.009 0
    $ {c_{{\text{p}}3}} $ −0.005 0
    $ {c_{{\text{p}}2}} $ −0.003 0.001
    下载: 导出CSV

    表  6  扩散因子逐步线性回归结果

    Table  6.   Stepwise linear regression results of diffusion factor

    叶型 参数 系数 显著性 ${R^2}$ $R_{{\text{adj}}}^2$
    叶型A (常数) 0.548 0 0.719 0.689
    $ {c_{{\text{b1}}}} $ −0.057 0
    $ {c_{{\text{p}}3}} $ 0.045 0
    叶型B (常数) 0.407 0 0.708 0.685
    $ {c_{{\text{b1}}}} $ 0.049 0
    $ {c_{{\text{p}}3}} $ 0.019 0
    $ {c_{{\text{p1}}}} $ 0.017 0
    $ {c_{{\text{b2}}}} $ 0.058 0
    $ {c_{{\text{q}}1}} $ 0.008 0.028
    下载: 导出CSV

    表  7  叶型A与优化叶型的喉部特性与堵塞工况特性对比

    Table  7.   Comparison of throat and choking condition characteristics between baseline A and optimized airfoils

    叶型喉部位置喉部宽度通道扩张比堵塞工况
    堵塞流量/(kg/s)堵塞冲角/(°)
    ORI A0.4890.6101.21743.11−1.772
    OPT10.4920.6021.24143.13−1.791
    OPT20.4870.6001.25342.90−1.560
    OPT30.4950.6111.21343.60−2.251
    OPT40.4950.6111.21443.64−2.292
    下载: 导出CSV

    表  8  叶型B与优化叶型的喉部特性与堵塞工况特性对比

    Table  8.   Comparison of throat and choking condition characteristics between baseline B and optimized airfoils

    叶型 喉部位置 喉部宽度 通道扩张比 堵塞工况
    堵塞流量/(kg/s) 堵塞冲角/(°)
    ORI B 0.751 0.470 1.051 46.67 2.61
    OPT1 0.747 0.468 1.054 46.67 2.61
    OPT2 0.751 0.469 1.044 46.87 2.49
    下载: 导出CSV
  • [1] 宋寅. 先进高负荷压气机气动设计技术综述[J]. 分布式能源,2018,3(3): 1-9. SONG Yin. Review on aerodynamics design of advanced highly-loaded compressor[J]. Distributed Energy,2018,3(3): 1-9. (in Chinese

    SONG Yin. Review on aerodynamics design of advanced highly-loaded compressor[J]. Distributed Energy, 2018, 3(3): 1-9. (in Chinese)
    [2] KÖLLER U,MÖNIG R,KÜSTERS B,et al. 1999 turbomachinery committee best paper award: development of advanced compressor airfoils for heavy-duty gas turbines: Part Ⅰ design and optimization[J]. Journal of Turbomachinery, 2000, 122(3): 397-405.
    [3] 徐全勇,阙晓斌,吴锋. 可控扩散叶型的扩稳优化[J]. 航空动力学报,2017,32(7): 1762-1768. XU Quanyong,QUE Xiaobin,WU Feng. Aerodynamic stability optimization of controlled diffusion airfoil[J]. Journal of Aerospace Power,2017,32(7): 1762-1768. (in Chinese

    XU Quanyong, QUE Xiaobin, WU Feng. Aerodynamic stability optimization of controlled diffusion airfoil[J]. Journal of Aerospace Power, 2017, 32(7): 1762-1768. (in Chinese)
    [4] SANGER N L. The use of optimization techniques to design-controlled diffusion compressor blading[J]. Journal of Engineering for Power,1983,105(2): 256-264. doi: 10.1115/1.3227410
    [5] 周铸,黄江涛,黄勇,等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报,2017,38(3): 020891. ZHOU Zhu,HUANG Jiangtao,HUANG Yong,et al. CFD technology in aeronautic engineering field: Applications,challenges and development[J]. Acta Aeronautica et Astronautica Sinica,2017,38(3): 020891. (in Chinese

    ZHOU Zhu, HUANG Jiangtao, HUANG Yong, et al. CFD technology in aeronautic engineering field: Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891. (in Chinese)
    [6] 高正红,王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报,2017,35(4): 516-528,454. GAO Zhenghong,WANG Chao. Aerodynamic shape design methods for aircraft: Status and trends[J]. Acta Aerodynamica Sinica,2017,35(4): 516-528,454. (in Chinese doi: 10.7638/kqdlxxb-2017.0058

    GAO Zhenghong, WANG Chao. Aerodynamic shape design methods for aircraft: Status and trends[J]. Acta Aerodynamica Sinica, 2017, 35(4): 516-528, 454. (in Chinese) doi: 10.7638/kqdlxxb-2017.0058
    [7] VIANA F A C,SIMPSON T W,BALABANOV V,et al. Special section on multidisciplinary design optimization: Metamodeling in multidisciplinary design optimization: How far have we really come?[J]. AIAA Journal,2014,52(4): 670-690. doi: 10.2514/1.J052375
    [8] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11): 3197-3225. HAN Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11): 3197-3225. (in Chinese

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. (in Chinese)
    [9] 韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5): 623344. HAN Zhonghua,XU Chenzhou,QIAO Jianling,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5): 623344. (in Chinese

    HAN Zhonghua, XU Chenzhou, QIAO Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344. (in Chinese)
    [10] SIEVERDING F,RIBI B,CASEY M,et al. Design of industrial axial compressor blade sections for optimal range and performance[J]. Journal of Turbomachinery,2004,126(2): 323-331. doi: 10.1115/1.1737782
    [11] 阙晓斌,蒋洪德. 重型燃气轮机压气机高雷诺数前转捩叶型设计[J]. 航空动力学报,2013,28(10): 2309-2315. QUE Xiaobin,JIANG Hongde. Design of high Reynolds number compressor airfoil with early transition for heavy-duty gas turbine[J]. Journal of Aerospace Power,2013,28(10): 2309-2315. (in Chinese

    QUE Xiaobin, JIANG Hongde. Design of high Reynolds number compressor airfoil with early transition for heavy-duty gas turbine[J]. Journal of Aerospace Power, 2013, 28(10): 2309-2315. (in Chinese)
    [12] CHEN Naixing,ZHANG Hongwu,HUANG Weiguang,et al. Study on aerodynamic design optimization of turbomachinery blades[J]. Journal of Thermal Science,2005,14(4): 298-304. doi: 10.1007/s11630-005-0048-5
    [13] 孔庆国,杜旭博,羌晓青,等. 基于中弧线曲率控制的压气机叶型优化[J]. 推进技术,2020,41(8): 1740-1747. KONG Qingguo,DU Xubo,QIANG Xiaoqing,et al. Compressor airfoil optimization based on camber curvature control[J]. Journal of Propulsion Technology,2020,41(8): 1740-1747. (in Chinese

    KONG Qingguo, DU Xubo, QIANG Xiaoqing, et al. Compressor airfoil optimization based on camber curvature control[J]. Journal of Propulsion Technology, 2020, 41(8): 1740-1747. (in Chinese)
    [14] 成金鑫,向航,陈江. 基元叶栅攻角特性多目标优化[J]. 航空动力学报,2017,32(12): 3064-3072. CHENG Jinxin,XIANG Hang,CHEN Jiang. Multi-objective optimization of incidence features for cascade[J]. Journal of Aerospace Power,2017,32(12): 3064-3072. (in Chinese

    CHENG Jinxin, XIANG Hang, CHEN Jiang. Multi-objective optimization of incidence features for cascade[J]. Journal of Aerospace Power, 2017, 32(12): 3064-3072. (in Chinese)
    [15] SOMMER L,BESTLE D. Curvature driven two-dimensional multi-objective optimization of compressor blade sections[J]. Aerospace Science and Technology,2011,15(4): 334-342. doi: 10.1016/j.ast.2010.08.008
    [16] SCHREIBER H A,STARKEN H. Experimental cascade analysis of a transonic compressor rotor blade section[J]. Journal of Engineering for Gas Turbines and Power,1984,106(2): 288-294. doi: 10.1115/1.3239561
    [17] HAN Z H,ZHANG K S. Surrogate-based optimization[M]. London,United Kingdom: InTech Book,2012: 343-362.
    [18] JONES D R,SCHONLAU M,WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4): 455-492. doi: 10.1023/A:1008306431147
  • 加载中
图(17) / 表(8)
计量
  • 文章访问数:  33
  • HTML浏览量:  29
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 网络出版日期:  2023-12-29

目录

    /

    返回文章
    返回