留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆台凹凸结构通道的流动传热性能和熵产研究

赵振 徐亮 高建民 席雷 李云龙

赵振, 徐亮, 高建民, 等. 圆台凹凸结构通道的流动传热性能和熵产研究[J]. 航空动力学报, 2024, 39(5):20210585 doi: 10.13224/j.cnki.jasp.20210585
引用本文: 赵振, 徐亮, 高建民, 等. 圆台凹凸结构通道的流动传热性能和熵产研究[J]. 航空动力学报, 2024, 39(5):20210585 doi: 10.13224/j.cnki.jasp.20210585
ZHAO Zhen, XU Liang, GAO Jianmin, et al. Study on flow and heat transfer performance and entropy generation in concave-convex channel with frustum of a cone[J]. Journal of Aerospace Power, 2024, 39(5):20210585 doi: 10.13224/j.cnki.jasp.20210585
Citation: ZHAO Zhen, XU Liang, GAO Jianmin, et al. Study on flow and heat transfer performance and entropy generation in concave-convex channel with frustum of a cone[J]. Journal of Aerospace Power, 2024, 39(5):20210585 doi: 10.13224/j.cnki.jasp.20210585

圆台凹凸结构通道的流动传热性能和熵产研究

doi: 10.13224/j.cnki.jasp.20210585
基金项目: 国家自然科学基金(51876157); 陕西省自然科学基金(2019JM-096)
详细信息
    作者简介:

    赵振(1990-),男,博士生, 研究方向为高端部件冷却技术。E-mail:316921916@qq.com

    通讯作者:

    徐亮(1980-),男,教授、博士生导师,博士,研究方向为高端部件冷却技术。E-mail:xuliang@mail.xjtu.edu.cn

  • 中图分类号: V231.1;TK172

Study on flow and heat transfer performance and entropy generation in concave-convex channel with frustum of a cone

  • 摘要:

    为提高换热器的结构强度和降低接触热阻,提出一种新型采用热冲压成形工艺的圆台凹凸板片。对径高比为3、6、12的圆台凹凸结构通道和径高比为6的圆柱和球型凹凸结构通道进行了数值研究,并探究了不同雷诺数下单侧和双侧凹凸表面通道的流动传热性能和熵产的分布规律。研究表明:单侧和双侧凹凸表面通道传热壁面的传热分布相似,但前者的流动传热性能要优于后者;当雷诺数从5 000增大到20 000时,圆台凹凸结构通道的摩擦因数比和综合传热因子均随着圆台径高比的增大而增大;当径高比一定时,通道的综合传热因子从大到小依次为球型、圆台和圆柱凹凸结构;此外,随着雷诺数的增大5种结构下通道的传热和摩擦熵产的比值会减小。

     

  • 图 1  凹凸结构通道(单位:mm)

    Figure 1.  Concave-convex structure channel (unit: mm)

    图 2  扰流结构模型(单位:mm)

    Figure 2.  Turbulence structure models (unit: mm)

    图 3  数值方法的验证

    Figure 3.  Verification of the numerical method

    图 4  网格示意图

    Figure 4.  Grid diagram

    图 5  重点分析区域

    Figure 5.  Key analysis areas

    图 6  区域1传热壁面的表面流线和温度云图

    Figure 6.  Surface streamline and temperature contours of heat transfer wall in area 1

    图 7  凹陷中截面沿流向的流线和温度云图

    Figure 7.  Streamline and temperature contours along flow direction in the middle section of the dimple

    图 8  凸起中截面沿流向的流线和温度云图

    Figure 8.  Streamline and temperature contours along flow direction in the middle section of the protrusion

    图 9  凹陷中截面沿法向的流线和湍动能云图

    Figure 9.  Streamline and TKE contours along normal direction in the middle section of the dimple

    图 10  凸起中截面沿法向的流线和湍动能云图

    Figure 10.  Streamline and TKE contours along normal direction in the middle section of the protrusion

    图 11  双侧凹凸表面通道传热壁面的当地Nu分布

    Figure 11.  Local Nu distribution on heat transfer wall of channel with two concave-convex surfaces

    图 12  单侧凹凸表面通道传热壁面的当地Nu分布

    Figure 12.  Local Nu distribution on heat transfer wall of channel with one concave-convex surface

    图 13  努塞尔数比的变化规律

    Figure 13.  Changeable rule of the Nu ratio

    图 14  摩擦因数比的变化规律

    Figure 14.  Changeable rule of the f/f0

    图 15  综合传热因子G的变化规律

    Figure 15.  Changeable rule of the G

    图 16  摩擦熵产的变化规律

    Figure 16.  Changeable rule of friction entropy generation

    图 17  传热熵产的变化规律

    Figure 17.  Changeable rule of heat transfer entropy generation

    表  1  网格无关性验证

    Table  1.   Grid independence verification

    网格数量/万 压差/Pa 平均努塞尔数
    230 31.7 47.9
    360 32.6 48.7
    540 35.2 49.6
    860 35.8 52.8
    970 36.2 54.1
    1 250 36.3 54.6
    下载: 导出CSV
  • [1] 王深,吕连宏,张保留,等. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究,2021,34(9): 2044-2055. WANG Shen,LYU Lianhong,ZHANG Baoliu,et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences,2021,34(9): 2044-2055. (in Chinese

    WANG Shen, LYU Lianhong, ZHANG Baoliu, et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055. (in Chinese)
    [2] 席雷,徐亮,高建民,等. X型桁架阵列通道流动及传热性能的数值研究[J]. 西安交通大学学报,2021,55(8): 101-110. XI Lei,XU Liang,GAO Jianmin,et al. Numerical research on flow and heat transfer performance of X-type truss array channels[J]. Journal of Xi’an Jiaotong University,2021,55(8): 101-110. (in Chinese

    XI Lei, XU Liang, GAO Jianmin, et al. Numerical research on flow and heat transfer performance of X-type truss array channels[J]. Journal of Xi’an Jiaotong University, 2021, 55(8): 101-110. (in Chinese)
    [3] 鲍锋,侯昶,江裕荣. 带三棱锥体群通道流动和传热特性的数值模拟[J]. 航空动力学报,2020,35(12): 2543-2552. BAO Feng,HOU Chang,JIANG Yurong. Numerical simulation of flow and heat transfer characteristics in passage with triangular Pyramids[J]. Journal of Aerospace Power,2020,35(12): 2543-2552. (in Chinese

    BAO Feng, HOU Chang, JIANG Yurong. Numerical simulation of flow and heat transfer characteristics in passage with triangular Pyramids[J]. Journal of Aerospace Power, 2020, 35(12): 2543-2552. (in Chinese)
    [4] 杨云,饶宇. 不同深度凹陷内湍流流动与传热性能的数值研究[J]. 上海交通大学学报,2017,51(1): 18-25. YANG Yun,RAO Yu. A numerical study of turbulent flow and heat transfer of dimples at different depths[J]. Journal of Shanghai Jiao Tong University,2017,51(1): 18-25. (in Chinese

    YANG Yun, RAO Yu. A numerical study of turbulent flow and heat transfer of dimples at different depths[J]. Journal of Shanghai Jiao Tong University, 2017, 51(1): 18-25. (in Chinese)
    [5] 文键,王春龙,刘华清,等. 板翅式换热器波纹翅片性能数值模拟及其优化[J]. 高校化学工程学报,2020,34(2): 335-341. WEN Jian,WANG Chunlong,LIU Huaqing,et al. Numerical simulation and optimization on performance of wavy fins in plate-fin heat exchangers[J]. Journal of Chemical Engineering of Chinese Universities,2020,34(2): 335-341. (in Chinese

    WEN Jian, WANG Chunlong, LIU Huaqing, et al. Numerical simulation and optimization on performance of wavy fins in plate-fin heat exchangers[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 335-341. (in Chinese)
    [6] XIE Gongnan,LIU Jian,LIGRANI P M,et al. Numerical predictions of heat transfer and flow structure in a square cross-section channel with various non-spherical indentation dimples[J]. Numerical Heat Transfer,Part A: Applications,2013,64(3): 187-215.
    [7] CHEN Yu,CHEW Y T,KHOO B C. Enhancement of heat transfer in turbulent channel flow over dimpled surface[J]. International Journal of Heat and Mass Transfer,2012,55(25/26): 8100-8121.
    [8] JING Qi,XIE Yonghui,ZHANG Di. Thermal-hydraulic performance and entropy generation of supercritical carbon dioxide in heat exchanger channels with teardrop dimple/protrusion[J]. International Journal of Heat and Mass Transfer,2019,135: 1082-1096. doi: 10.1016/j.ijheatmasstransfer.2019.02.058
    [9] 陈炎嗣,郭景仪. 冲压模具设计与制造技术[M]. 北京: 北京出版社,1991.
    [10] 王定标,夏春杰,董永申. 凹凸板换热器强化传热的数值模拟[J]. 化工进展,2014,33(增刊1): 106-112. WANG Dingbiao,XIA Chunjie,DONG Yongshen. Performance study of honeycomb plate heat exchanger[J]. Chemical Industry and Engineering Progress,2014,33(Suppl.1): 106-112. (in Chinese

    WANG Dingbiao, XIA Chunjie, DONG Yongshen. Performance study of honeycomb plate heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(Suppl.1): 106-112. (in Chinese)
    [11] LIU Jian,SONG Yidan,XIE Gongnan,et al. Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions[J]. Energy,2015,79: 1-19. doi: 10.1016/j.energy.2014.05.075
    [12] HWANG S D,KWON H G,CHO H H. Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers[J]. Energy,2010,35(12): 5357-5364. doi: 10.1016/j.energy.2010.07.022
    [13] LI Ming,CHEN Xin,RUAN Xinjian. Investigation of flow structure and heat transfer enhancement in rectangular channels with dimples and protrusions using large eddy simulation[J]. International Journal of Thermal Sciences,2020,149: 106207. doi: 10.1016/j.ijthermalsci.2019.106207
    [14] 王光辉,王定标,彭旭,等. 凹凸板的传热流阻特性及其多目标优化[J]. 工程热物理学报,2019,40(1): 143-149. WANG Guanghui,WANG Dingbiao,PENG Xu,et al. Heat transfer and resistance performance of plate heat exchanger with dimples and protrusions and optimization[J]. Journal of Engineering Thermophysics,2019,40(1): 143-149. (in Chinese

    WANG Guanghui, WANG Dingbiao, PENG Xu, et al. Heat transfer and resistance performance of plate heat exchanger with dimples and protrusions and optimization[J]. Journal of Engineering Thermophysics, 2019, 40(1): 143-149. (in Chinese)
    [15] 李光耀,王琥,杨旭静,等. 板料冲压成形工艺与模具设计制造中的若干前沿技术[J]. 机械工程学报,2010,46(10): 31-39. LI Guangyao,WANG Hu,YANG Xujing,et al. Some new topics on process design and mould manufacture for sheet metal forming[J]. Journal of Mechanical Engineering,2010,46(10): 31-39. (in Chinese doi: 10.3901/JME.2010.10.031

    LI Guangyao, WANG Hu, YANG Xujing, et al. Some new topics on process design and mould manufacture for sheet metal forming[J]. Journal of Mechanical Engineering, 2010, 46(10): 31-39. (in Chinese) doi: 10.3901/JME.2010.10.031
    [16] 马鸣图,蒋松蔚,李光瀛,等. 热冲压成形钢的研究进展[J]. 机械工程材料,2020,44(7): 1-7,27. MA Mingtu,JIANG Songwei,LI Guangying,et al. Research progress on hot stamping steel[J]. Materials for Mechanical Engineering,2020,44(7): 1-7,27. (in Chinese

    MA Mingtu, JIANG Songwei, LI Guangying, et al. Research progress on hot stamping steel[J]. Materials for Mechanical Engineering, 2020, 44(7): 1-7, 27. (in Chinese)
    [17] 华林,魏鹏飞,胡志力. 高强轻质材料绿色智能成形技术与应用[J]. 中国机械工程,2020,31(22): 2753-2762,2771. HUA Lin,WEI Pengfei,HU Zhili. Green and intelligent forming technology and its applications for high strength lightweight materials[J]. China Mechanical Engineering,2020,31(22): 2753-2762,2771. (in Chinese

    HUA Lin, WEI Pengfei, HU Zhili. Green and intelligent forming technology and its applications for high strength lightweight materials[J]. China Mechanical Engineering, 2020, 31(22): 2753-2762, 2771. (in Chinese)
    [18] 赵振,徐亮,高建民,等. 圆台扰流换热器的流动与传热特性研究[J]. 西安交通大学学报,2021,55(10): 131-143. ZHAO Zhen,XU Liang,GAO Jianmin,et al. A study on the flow and heat transfer characteristics of heat exchanger with cone-type vortex generators[J]. Journal of Xi’an Jiaotong University,2021,55(10): 131-143. (in Chinese

    ZHAO Zhen, XU Liang, GAO Jianmin, et al. A study on the flow and heat transfer characteristics of heat exchanger with cone-type vortex generators[J]. Journal of Xi’an Jiaotong University, 2021, 55(10): 131-143. (in Chinese)
    [19] 赵振,高建民,徐亮,等. 圆台扰流换热器结构参数优化的数值模拟研究[J]. 西安交通大学学报,2021,55(12): 35-46. ZHAO Zhen,GAO Jianmin,XU Liang,et al. Numerical simulation on structural parameter optimization of heat exchanger with frustum of a cone[J]. Journal of Xi’an Jiaotong University,2021,55(12): 35-46. (in Chinese

    ZHAO Zhen, GAO Jianmin, XU Liang, et al. Numerical simulation on structural parameter optimization of heat exchanger with frustum of a cone[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 35-46. (in Chinese)
    [20] BEJAN A,TSATSARONIS G,MORAN M J. Thermal design and optimization[M]. New York: John Wiley,1996.
    [21] ZHAI Y L,XIA G D,LIU X F,et al. Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis[J]. International Journal of Heat and Mass Transfer,2014,68: 224-233. doi: 10.1016/j.ijheatmasstransfer.2013.08.086
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  46
  • HTML浏览量:  15
  • PDF量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回