留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷丸残余应力及夹杂影响小裂纹仿真概率模型

杨茂 陆山 潘容 张永刚 刘小桃 秦仕勇

杨茂, 陆山, 潘容, 等. 喷丸残余应力及夹杂影响小裂纹仿真概率模型[J]. 航空动力学报, 2023, 38(4):913-920 doi: 10.13224/j.cnki.jasp.20210588
引用本文: 杨茂, 陆山, 潘容, 等. 喷丸残余应力及夹杂影响小裂纹仿真概率模型[J]. 航空动力学报, 2023, 38(4):913-920 doi: 10.13224/j.cnki.jasp.20210588
YANG Mao, LU Shan, PAN Rong, et al. Probabilistic model of small crack simulation considering shot peening residual stress and inclusion influence[J]. Journal of Aerospace Power, 2023, 38(4):913-920 doi: 10.13224/j.cnki.jasp.20210588
Citation: YANG Mao, LU Shan, PAN Rong, et al. Probabilistic model of small crack simulation considering shot peening residual stress and inclusion influence[J]. Journal of Aerospace Power, 2023, 38(4):913-920 doi: 10.13224/j.cnki.jasp.20210588

喷丸残余应力及夹杂影响小裂纹仿真概率模型

doi: 10.13224/j.cnki.jasp.20210588
详细信息
    作者简介:

    杨茂(1991-),男,博士生,主要从事镍基高温合金疲劳裂纹行为仿真及晶体塑性理论研究

    通讯作者:

    陆山(1955-),男,教授、博士生导师,博士,主要从事航空发动机零部件强度、寿命及可靠性研究工作。E-mail:shanlu@nwpu.edu.cn

  • 中图分类号: V231.95

Probabilistic model of small crack simulation considering shot peening residual stress and inclusion influence

  • 摘要:

    提出考虑喷丸残余应力及内部夹杂影响的随机内部小裂纹形核扩展概率模型,实现构件内部疲劳裂纹萌生过程的仿真。针对高温合金X,在开展试验的数据基础上,识别模型所需的残余应力分布参数、“形核相关”夹杂尺寸分布参数、微观结构相关塑性本构参数及小裂纹形核扩展参数。模型成功预测喷丸等直棒两种主要的形核方式:残余拉应力平衡层夹杂形核及无残余应力区夹杂形核。与试验对比,模型预测内部裂纹萌生寿命及其分散精度高,残余拉应力平衡层预测萌生寿命中值误差为2%,−3σ寿命误差为37%,无残余应力区预测萌生寿命中值误差为3%,−3σ寿命误差为3%;此外,模型仿真的内部裂纹形貌为“鱼眼形”,贴合试验件断口形貌。

     

  • 图 1  内部裂纹在最大主应力梯度平面的投影及等效

    Figure 1.  Projection and equivalence of an inner crack on the maximum principal stress gradient plane

    图 2  典型喷丸残余应力分布及分层

    Figure 2.  Typical distribution of shot peening residual stress and its stratification

    图 3  “形核相关”夹杂尺寸定义及统计

    Figure 3.  Definition and statistics of sizes of nucleation-related inclusions

    图 4  喷丸等直棒试件残余应力沿深度分布

    Figure 4.  Residual stress distribution along depth of shot peening uniform-cross-section bar

    图 5  等直棒应变控制应力应变响应仿真与试验对比

    Figure 5.  Comparison between simulated and experimental stress-strain responses of the uniform-cross-section bar under the strain-controlled tests

    图 6  喷丸等直棒不同区域形核寿命分布仿真

    Figure 6.  Simulated nucleation life distributions in different zones of shot peening uniform-cross-section bar

    图 7  喷丸等直棒C区小裂纹扩展过程抽样

    Figure 7.  Sampling of small crack propagation in zone C of shot peening uniform-cross-section bar

    图 8  萌生区裂纹样貌对比

    Figure 8.  Comparison of crack appearances in initiation zone

    图 9  喷丸等直棒不同形核模式仿真宏观萌生寿命抽样分布

    Figure 9.  Sampling of initiation life distribution with different nucleation patterns of shot peening uniform-cross-section bars

    图 10  喷丸等直棒不同形核模式仿真萌生寿命分布与试验对比

    Figure 10.  Comparison between simulated and experimental initiation life with different nucleation patterns of shot peening uniform-cross-section bars

  • [1] 王欣,胡云峰,王晓峰,等. 喷丸强化对FGH96粉末高温合金疲劳性能应力集中系数敏感性的影响[J]. 航空制造技术,2017(13): 48-53.

    WANG Xin,HU Yunfeng,WANG Xiaofeng,et al. Effect of shot peening on fatigue performance stress-concentration sensitivity of FGH96 power metallurgy superalloy[J]. Aeronautical Manufacturing Technology,2017(13): 48-53. (in Chinese)
    [2] GAO Y K,WU X R. Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses[J]. Acta Materialia,2011,59(9): 3737-3747. doi: 10.1016/j.actamat.2011.03.013
    [3] GAO Y K,LI X B,YANG Q X,et al. Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel[J]. Materials Letters,2007,61(2): 466-469. doi: 10.1016/j.matlet.2006.04.089
    [4] 高玉魁,仲政,雷力明. 激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响[J]. 稀有金属材料与工程,2016,45(5): 1230-1234.

    GAO Yukui,ZHONG Zheng,LEI Liming. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy[J]. Rara Metal Materials and Engineering,2016,45(5): 1230-1234. (in Chinese)
    [5] 王欣,陈星,王晓峰,等. 表面完整性对FGH96粉末合金高温低循环疲劳性能的影响研究[J]. 稀有金属材料与工程,2019,48(1): 269-278.

    WANG Xin,CHEN Xing,WANG Xiaofeng,et al. Effect of surface integrity on high-temperature low-cycle fatigue of FGH96power metallurgy superalloy[J]. Rara Metal Materials and Engineering,2019,48(1): 269-278. (in Chinese)
    [6] 冉刚,乙晓伟,张仕朝,等. 基于双参数寿命模型的抗疲劳制造结果参量分析方法[J]. 航空材料学报,2017,37(6): 68-74. doi: 10.11868/j.issn.1005-5053.2017.000110

    RAN Gang,YI Xiaowei,ZHANG Shichao,et al. A new analysis method using influencing factors of anti-fatigue manufacture based on fatigue life double-parameter model[J]. Journal of Aeronautical Materials,2017,37(6): 68-74. (in Chinese) doi: 10.11868/j.issn.1005-5053.2017.000110
    [7] 徐瑞瑞. 某高温合金喷丸表面状态和疲劳寿命建模仿真及试验研究[D]. 西安: 西北工业大学, 2021.

    XU Ruirui. Modeling and simulation and experimental research on surface state and fatigue life after shot peening of some superalloy[D]. Xi’an: Northwestern Polytechnical University, 2021. (in Chinese)
    [8] GUAGLIANO M,VERGANI L. An approach for prediction of fatigue strength of shot peened components[J]. Engineering Fracture Mechanics,2004,71(4): 501-512.
    [9] SEMARI Z,AID A,BENHAMENA A,et al. Effect of residual stresses induced by cold expansion on the crack growth in 6082 aluminum alloy[J]. Engineering Fracture Mechanics,2013,99(1): 159-168.
    [10] ALMARAZ G M D. Prediction of very high cycle fatigue failure for high strength steels, based on the inclusion geometrical properties[J]. Mechanics of Materials,2008,40(8): 636-640. doi: 10.1016/j.mechmat.2008.03.001
    [11] WEI L,DENG H,LIU P. Interior fracture mechanism analysis and fatigue life prediction of surface-hardened gear steel under axial loading[J]. Materials,2016,9(10): 843-856. doi: 10.3390/ma9100843
    [12] LAZ P J,HILLBERRY B M. Fatigue life prediction from inclusion initiated cracks[J]. International Journal of Fatigue,1998,20(4): 263-270. doi: 10.1016/S0142-1123(97)00136-9
    [13] LAZ P J,CRAIG B A,HILLBERRY B M. A probabilistic total fatigue life model incorporating material inhomogeneities, stress level and fracture mechanics[J]. International Journal of Fatigue,2001,23(1): 119-127.
    [14] YANG M,LU S. A microstructure-based homogenization model for predicting the low-cycle fatigue initiation life of GH4169 superalloy[J]. Fatigue & Fracture of Engineering Materials and Structures,2021,44(6): 1546-1561.
    [15] 牟园伟,陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报,2013,34(2): 282-290. doi: 10.7527/S1000-6893.2013.0033

    MU Yuanwei,LU Shan. Numerical simulation of fatigue-crack-initiation life for turbine disk based on material microcosmic characteristics[J]. Acta Aeronautica et Astronautica Sinica,2013,34(2): 282-290. (in Chinese) doi: 10.7527/S1000-6893.2013.0033
    [16] KING A,LUDWIG W,HERBIG M,et al. Three-dimensional in situ observations of short fatigue crack growth in magnesium[J]. Acta Materialia,2011,59(17): 6761-6771. doi: 10.1016/j.actamat.2011.07.034
    [17] 冯业飞,周晓明,邹金文,等. 夹杂物对FGH96合金低周疲劳寿命的影响[J]. 稀有金属材料与工程,2021,50(7): 2455-2463.

    FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,et al. Effect of inclusions on low cycle fatigue lifetime and life prediction in powder metallurgy superalloy FGH96[J]. Rare Metal Materials and Engineering,2021,50(7): 2455-2463. (in Chinese)
    [18] MEGUID S A,SHAGAL G,STRANART J C. Finite element modelling of shot-peening residual stresses[J]. Journal of Materials Processing Technology,1999,92/93: 401-404.
    [19] MARIN E B. On the formulation of a crystal plasticity model[R]. Livermore, CA, US: Sandia National Laboratories, SAND2006-4170, 2006.
    [20] MCDOWELL D L. Simulation-based strategies for microstructure-sensitive fatigue modeling[J]. Materials Science and Engineering A,2007,468/469/470: 4-14.
  • 加载中
图(10)
计量
  • 文章访问数:  104
  • HTML浏览量:  40
  • PDF量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 网络出版日期:  2022-12-16

目录

    /

    返回文章
    返回