留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速风洞喷管冷却结构的多目标优化设计

杨洪涛 游广飞 徐亮 阮麒成

杨洪涛, 游广飞, 徐亮, 等. 超声速风洞喷管冷却结构的多目标优化设计[J]. 航空动力学报, 2023, 38(5):1047-1057 doi: 10.13224/j.cnki.jasp.20210590
引用本文: 杨洪涛, 游广飞, 徐亮, 等. 超声速风洞喷管冷却结构的多目标优化设计[J]. 航空动力学报, 2023, 38(5):1047-1057 doi: 10.13224/j.cnki.jasp.20210590
YANG Hongtao, YOU Guangfei, XU Liang, et al. Multi-objective optimization design of supersonic wind-tunnel nozzle cooling structure[J]. Journal of Aerospace Power, 2023, 38(5):1047-1057 doi: 10.13224/j.cnki.jasp.20210590
Citation: YANG Hongtao, YOU Guangfei, XU Liang, et al. Multi-objective optimization design of supersonic wind-tunnel nozzle cooling structure[J]. Journal of Aerospace Power, 2023, 38(5):1047-1057 doi: 10.13224/j.cnki.jasp.20210590

超声速风洞喷管冷却结构的多目标优化设计

doi: 10.13224/j.cnki.jasp.20210590
基金项目: 国家自然科学基金(51876157); 陕西省自然科学基金(2019JM-096)
详细信息
    作者简介:

    杨洪涛(1989-),男,高级工程师,硕士,主要从事航空航天领域非标机电一体化装备设计研究

  • 中图分类号: V211.74

Multi-objective optimization design of supersonic wind-tunnel nozzle cooling structure

  • 摘要:

    针对某风洞喷管提出了一种水冷结构,即在喷管前后段壁内设置了24组流道,而在喉部区域壁内错排布置扰流柱阵列。采用气热耦合-结构热分析的数值模拟方法对喷管整体结构的流动、换热、刚度性能进行了计算和分析。计算结果表明:冷却水量为1 kg/s时,与基础件相比,提出的冷却结构的概念件平均冷却效率提升0.68%,喉部等效应变减小5%左右。采用了响应面模型近似方法和多岛遗传算法对概念件进行了多目标优化计算,结果表明:冷却水量为2.1429 kg/s时,与概念件对比,优化件壁面最高温度可以降低1.6 K左右,喉部等效应变减小约10%。喷管冷却结构设计及其多目标优化方法为风洞喷管型面有效的热防护设计提供一定的参考。

     

  • 图 1  风洞喷管的几何模型[15]

    Figure 1.  Geometric model of wind-tunnel nozzle[15]

    图 2  风洞喷管壁面温度分布[15]

    Figure 2.  Temperature distribution on wall of a wind-tunnel nozzle[15]

    图 3  计算域网格绘制

    Figure 3.  Mesh generation for computational domain

    图 4  数值方法的验证

    Figure 4.  Validation of numerical method

    图 5  喷管壁面冷却的基础件和概念件模型

    Figure 5.  Basic nozzle and conceptual nozzle models for wall cooling

    图 6  固体域的非结构化网格

    Figure 6.  Unstructured mesh generation of solid domain

    图 7  多目标优化模型

    Figure 7.  Model of multi-objective optimization

    图 8  不同质量流量下概念件的流动换热性能比较

    Figure 8.  Flow and heat transfer performances comparison of conceptual nozzle under different mass flow rates

    图 9  响应拟合关联式误差

    Figure 9.  Error of response fitting correlation formulas

    图 10  喷管喉部区域壁面温度(Q=1 kg/s)

    Figure 10.  Temperature of nozzle throat wall (Q =1 kg/s)

    图 11  喷管壁面的应力、应变云图(Q=1 kg/s)

    Figure 11.  Stress and strain diagram of nozzle walls (Q=1 kg/s)

    图 12  目标参数与输入参数的关系

    Figure 12.  Relations between outputs and inputs

    图 13  优化件和概念件壁面的温度云图(Q=2.1429 kg/s)

    Figure 13.  Temperature diagram of the optimized and the conceptual nozzle walls (Q=2.1429 kg/s)

    图 14  优化件和概念件壁面的应变云图(Q=2.1429 kg/s)

    Figure 14.  Strain diagram of the optimized and the conceptual nozzle walls (Q=2.1429 kg/s)

    表  1  喷管气热耦合计算边界条件及其湍流模型

    Table  1.   Boundary conditions and turbulence model of the coupled heat transfer calculation for nozzle

    参数数值及说明
    燃气入口压力/105 Pa5.171
    燃气入口温度/K844.3
    外壁面温度式(1)
    喷管出口超声速出口
    入口燃气密度/(kg/m32.1306
    燃气动力黏度Sutherland方程
    湍流模型RNG k-ε
    下载: 导出CSV

    表  2  中心复合实验设计方案下气热耦合数值模拟计算结果

    Table  2.   Coupled heat transfer numerical simulation results of central composite experimental design schemes

    运行序Q/
    (kg/s)
    θ/
    (°)
    D/
    mm
    L/
    mm
    ηTmax/Kf
    12.7520360.8929400.90.00452
    22.7515360.8929400.40.00425
    32.7515560.8929401.90.00460
    42.7510360.8933399.50.00432
    55.0015360.8997395.90.00399
    62.7515350.8929400.60.00427
    72.7515370.8931400.10.00391
    80.5015360.8426437.00.00525
    92.7515360.8929400.40.00425
    102.7515160.8923402.50.00381
    115.0020550.8995398.40.00435
    122.7515360.8929400.40.00425
    132.7515360.8929400.40.00425
    140.5020570.8444430.40.00541
    155.0010150.8993396.80.00388
    160.5010550.8472418.20.00525
    170.5010170.8389449.90.00539
    185.0010570.8988398.50.00576
    190.5020150.8341468.50.00506
    205.0020170.8995396.20.00319
    210.5020550.8449425.40.00553
    225.0010170.8995396.80.00377
    230.5010150.8391447.10.00584
    245.0010550.8988400.70.00486
    252.7515360.8929400.40.00425
    265.0020570.8995398.00.00398
    272.7515360.8929400.40.00425
    280.5020170.8381452.50.00456
    295.0020150.8953414.40.00347
    300.5010570.8479419.00.00614
    下载: 导出CSV

    表  3  拟合公式系数表

    Table  3.   Table of fitting formula coefficient

    多项式
    分项
    分项
    系数
    系数值
    ηTmaxf
    常数项c08.19×10−14.57×1023.13×10−3
    x1c13.71×10−2−2.68×101−8.14×10−4
    x2c2−8.63×10−43.64×100−1.15×10−4
    x3c34.00×10−3−1.56×101−4.27×10−4
    x4c41.58×10−3−2.20×1001.43×10−3
    x12c11−4.35×10−33.25×1008.34×10−5
    x22c22−1.93×10−68.00×10−38.88×10−6
    x32c33−1.27×10−45.50×10−12.96×10−6
    x42c44−1.40×10−43.50×10−1−1.04×10−4
    x1·x2c124.90×10−5−1.58×10−1−6.78×10−6
    x1·x3c13−4.34×10−41.62×1004.41×10−5
    x1·x4c141.02×10−5−3.72×10−18.06×10−6
    x2 x3c233.44×10−5−1.57×10−1−8.36×10−7
    x2·x4c248.73×10−5−3.87×10−1−3.13×10−5
    x3·x4c34−2.53×10−41.08×1008.21×10−5
    下载: 导出CSV

    表  4  响应面模型拟合公式的精度

    Table  4.   Accuracy of response surface model fitting formula

    响应参数R2/%
    η99.91
    Tmax97.77
    f93.05
    下载: 导出CSV

    表  5  喷管的流动换热性能对比

    Table  5.   Flow and heat transfer performances comparison of nozzle

    流动换热指标概念件基础件
    最高温度Tmax/K416.0426.7
    平均冷却效率η0.87160.8648
    摩擦因数f0.004790.00351
    下载: 导出CSV

    表  6  优化计算和仿真验算结果的比较

    Table  6.   Comparison of optimization calculation and simulation verification results

    结果比较输入参数响应参数
    Q/(kg/s)θ/(°)D/mmL/mmηTmax/Kf
    优化件的优化计算结果2.142910.02333.32225.84800.8850401.80.00493
    优化件的仿真验算结果2.142910.02333.32225.84800.8896401.40.00453
    误差/%0.520.108.11
    概念件的仿真验算结果2.142915360.8890403.00.00437
    下载: 导出CSV
  • [1] MEYER O,NITSCHE W. Update on progress in adaptive wind tunnel wall technology[J]. Progress in Aerospace Sciences,2004,40(3): 119-141. doi: 10.1016/j.paerosci.2004.02.001
    [2] OWEN F K,OWEN A K. Measurement and assessment of wind tunnel flow quality[J]. Progress in Aerospace Sciences,2008,44(5): 315-348. doi: 10.1016/j.paerosci.2008.04.002
    [3] MUNGIGUERRA S,MARTINO G D D,SAVINO R,et al. Characterization of novel ceramic composites for rocket nozzles in high-temperature harsh environments[J]. International Journal of Heat and Mass Transfer,2020,163: 120492.1-120492.18. doi: 10.1016/j.ijheatmasstransfer.2020.120492
    [4] 范志鹏,徐惊雷,吕郑,等. 型面旋转变马赫数风洞喷管的优化设计[J]. 航空学报,2014,35(5): 1216-1225.

    FANG Zhipeng,XU Jinglei,LÜ Zheng,et al. Optimization design of variable mach number wind tunnel nozzle by rotating profile[J]. Acta Aeronautica et Astronautica Sinica,2014,35(5): 1216-1225. (in Chinese)
    [5] CHEN Pengfei,WU Feng,XU Jinglei,et al. Design and implementation of rigid-flexible coupling for a half-flexible single jack nozzle[J]. Chinese Journal of Aeronautics,2016,29(6): 1477-1483. doi: 10.1016/j.cja.2016.09.002
    [6] 齐伟呈,徐惊雷,范志鹏,等. 马赫数2~4连续可调风洞数值模拟及静态标定试验[J]. 航空学报,2017,38(1): 86-94.

    QI Weicheng,XU Jinglei,FAN Zhipeng,et al. Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4[J]. Acta Aeronautica et Astronautica Sinica,2017,38(1): 86-94. (in Chinese)
    [7] LÜ Zheng. , XU Jinglei, WU Feng, et al. Design of a variable Mach number wind tunnel nozzle operated by a single jack[J]. Aerospace Science and Technology,2018,77: 299-305. doi: 10.1016/j.ast.2018.03.011
    [8] 金韶山,姜培学,孙纪国. 液体火箭发动机喷管发汗冷却研究[J]. 航空动力学报,2008,23(7): 1334-1340.

    JIN Shaoshan,JIANG Peixue,SUN Jiguo. Investigation on the transpiration cooling of a liquid rocket nozzle[J]. Journal of Aerospace Power,2008,23(7): 1334-1340. (in Chinese)
    [9] 金韶山. 液体火箭发动机推力室及钝体头锥发汗冷却研究[D]. 北京: 清华大学, 2008.

    JIN Shaoshan. Research on transpiration cooling of liquid rocket thrust chamber and blunt nose cone[D]. Beijing: Tsinghua University, 2008. (in Chinese)
    [10] 张宏伟,陶文铨,何雅玲,等. 再生冷却推力室耦合传热数值模拟[J]. 航空动力学报,2006,21(5): 148-154. doi: 10.3969/j.issn.1000-8055.2006.05.025

    ZHANG Hongwei,TAO Wenquan,HE Yaling,et al. Numerical study on coupled heat transfer of thrust chamber with regenerative cooling[J]. Journal of Aerospace Power,2006,21(5): 148-154. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.05.025
    [11] 康玉东,孙冰. 气壁镀镍和冷却剂入口对再生冷却的影响[J]. 航空动力学报,2010,25(12): 2834-2838.

    KANG Yudong,SUN Bing. Effects of hot-gas wall nickelage and cooling channel inflow on regenerative cooling[J]. Journal of Aerospace Power,2010,25(12): 2834-2838. (in Chinese)
    [12] RALF S,CHLOÉ G,CHRISTIAN M,et al. Design of a film cooled dual-bell nozzle[J]. Acta Astronautica,2019,158: 342-350. doi: 10.1016/j.actaastro.2018.05.056
    [13] MAYANK V,NITISH A,ASHOKE D. Investigation of flow characteristics inside a dual bell nozzle with and without film cooling[J]. Aerospace Science and Technology,2020,99: 105741.1-105741.14. doi: 10.1016/j.ast.2020.105741
    [14] KIM K S,LEE S H,NGUYEN V Q,et al. Ablation characteristics of rocket nozzle using HfC-SiC refractory ceramic composite[J]. Acta Astronautica,2020,173: 31-44. doi: 10.1016/j.actaastro.2020.03.050
    [15] BACK L H, MASSIER P F, GIER H L. Convective heat transfer in a convergent-divergent nozzle[J]. International Journal of Heat and Mass Transfer 1964, 7(5): 549-568.
    [16] 何宁,杨海波,孙冬柏. 高温长时间风洞喷管冷却结构CFD研究[J]. 工程科学学报,2016,38(4): 568-574.

    HE Ning,YANG Haibo,SUN Dongbai. CFD study on nozzle cooling structure for a wind tunnel of high temperature and long operation time[J]. Chinese Journal of Engineering,2016,38(4): 568-574. (in Chinese)
    [17] 黄祯君,张涛,王杰. 高焓高热流条件下半椭圆喷管冷却结构设计与分析[J]. 机械工程学报,2019,55(18): 157-164. doi: 10.3901/JME.2019.18.157

    HUANG Zhenjun,ZHANG Tao,WANG Jie. Cooling structural design and thermodynamic analysis of semi-elliptic nozzle under high enthalpy and high heatflux conditions[J]. Journal of Mechanical Engineering,2019,55(18): 157-164. (in Chinese) doi: 10.3901/JME.2019.18.157
    [18] PAL S, TUCKER K, LEHMAN M, et al. Experimental studies of the heat transfer to RBCC rocket nozzles for CFD application to design methodology[C]//Proceedings of the 33rd ASME/AIChE/ANS/AIAA National Heat Transfer Conference. Reston, US: AIAA, 1999: 168-177.
    [19] LIU Q Y,LUKE E A,CINNELLA P. Coupling heat transfer and fluid flow solvers for multidisciplinary simulations[J]. Journal of Thermophysics and Heat Transfer,2005,19(4): 417-427. doi: 10.2514/1.13522
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  129
  • HTML浏览量:  42
  • PDF量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-16
  • 网络出版日期:  2022-12-16

目录

    /

    返回文章
    返回