留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

侧喷式一体化支板火焰稳定器液雾分布试验

张权 刘玉英 谢奕 高昭 刘广海

张权, 刘玉英, 谢奕, 等. 侧喷式一体化支板火焰稳定器液雾分布试验[J]. 航空动力学报, 2023, 38(3):607-617 doi: 10.13224/j.cnki.jasp.20210592
引用本文: 张权, 刘玉英, 谢奕, 等. 侧喷式一体化支板火焰稳定器液雾分布试验[J]. 航空动力学报, 2023, 38(3):607-617 doi: 10.13224/j.cnki.jasp.20210592
ZHANG Quan, LIU Yuying, XIE Yi, et al. Experiment on spray distribution of an integrated strut flameholder with cross injection[J]. Journal of Aerospace Power, 2023, 38(3):607-617 doi: 10.13224/j.cnki.jasp.20210592
Citation: ZHANG Quan, LIU Yuying, XIE Yi, et al. Experiment on spray distribution of an integrated strut flameholder with cross injection[J]. Journal of Aerospace Power, 2023, 38(3):607-617 doi: 10.13224/j.cnki.jasp.20210592

侧喷式一体化支板火焰稳定器液雾分布试验

doi: 10.13224/j.cnki.jasp.20210592
基金项目: 国家科技重大专项(J2019-Ⅲ-0016-0060)
详细信息
    作者简介:

    张权(1996-),男,博士生,主要从事航空发动机雾化研究

    通讯作者:

    刘玉英(1974-),女,教授,博士,主要从事发动机燃烧研究。E-mail:yyliu@buaa.edu.cn

  • 中图分类号: V231.23

Experiment on spray distribution of an integrated strut flameholder with cross injection

  • 摘要:

    在常温常压、来流马赫数为0.182及液气动量比为10~70的条件下,以水为雾化介质,采用激光片光照相法开展了侧喷式一体化支板火焰稳定器的液雾分布特点研究,并探讨了液气动量比及喷射位置对液雾分布轨迹的影响规律。研究表明:侧喷式一体化支板火焰稳定器液雾分布的外轨迹与横向射流类似,内轨迹受稳定器回流区卷吸作用的影响而弯向回流区,且在低液气动量比条件下影响显著。液气动量比是影响一体化支板火焰稳定器喷雾内外轨迹的重要因素,液气动量比增加,液雾穿透深度增加。喷射位置对液雾外轨迹的影响较小,但对内轨迹影响显著;过近或过远的喷射距离均不利于回流区对液雾的卷吸,这与液雾喷射和稳定器的近距耦合有关。

     

  • 图 1  一体化支板火焰稳定器示意图

    Figure 1.  Diagram of ISF

    图 2  雾化测试系统示意图

    Figure 2.  Diagram of atomization test system

    图 3  图片处理过程(ISF-40,q=30,T=300 K,Ma=0.182)

    Figure 3.  Process of image processing (ISF-40,q=30,T=300 K,Ma=0.182)

    图 4  内外边界示意图(ISF-40,q=30,T=300 K,Ma=0.182)

    Figure 4.  Diagram of inner and outer boundaries (ISF-40,q=30,T=300 K,Ma=0.182)

    图 5  不同液气动量比下的质量浓度云图(ISF-40,q=10~70,T=300 K,Ma=0.182)

    Figure 5.  Mass cloud map of concentration about different liquid-air momentum ratios (ISF-40,q=10−70,T=300 K,Ma=0.182)

    图 6  一体化火焰稳定器速度与液雾分布特性[11]

    Figure 6.  Characteristics of velocity and spray distribution in ISF[11]

    图 7  不同液气动量比下的质量浓度云图(ISF-30, q=10~70, T=300 K, Ma=0.182)

    Figure 7.  A cloud map of the concentration about different liquid-air momentum ratio (ISF-30, q=10−70, T=300 K, Ma=0.182)

    图 8  液气动量比对液雾分布外轨迹的影响(ISF-30,T=300 K,Ma=0.182)

    Figure 8.  Effect of different liquid-air momentum ratios on outer boundary of spray distribution (ISF-30,T=300 K,Ma=0.182)

    图 9  液气动量比对液雾分布外轨迹的影响(ISF-40,T=300 K,Ma=0.182)

    Figure 9.  Effect of different liquid-air momentum ratios on outer boundary of spray distribution (ISF-40,T=300 K,Ma=0.182)

    图 10  液气动量比对液雾分布外轨迹的影响(ISF-50,T=300 K,Ma=0.182)

    Figure 10.  Effect of different liquid-air momentum ratios on outer boundary of spray distribution (ISF-50,T=300 K,Ma=0.182)

    图 11  试验数据与经验关系式对比

    Figure 11.  Comparison between test data and experience relationship

    图 12  液气动量比对液雾分布内轨迹的影响(ISF-30,T=300 K,Ma=0.182)

    Figure 12.  Effect of different liquid-air momentum ratios on inner boundary of spray distribution (ISF-30,T=300 K,Ma=0.182)

    图 13  液气动量比对液雾分布内轨迹的影响(ISF-40,T=300 K,Ma=0.182)

    Figure 13.  Effect of different liquid-air momentum ratios on inner boundary of spray distribution (ISF-40,T=300 K,Ma=0.182)

    图 14  液气动量比对液雾分布内轨迹的影响(ISF-50,T=300 K,Ma=0.182)

    Figure 14.  Effect of different liquid-air momentum ratios on inner boundary of spray distribution (ISF-50,T=300 K,Ma=0.182)

    图 15  喷射位置对液雾分布外轨迹的影响(q=10,T=300 K,Ma=0.182)

    Figure 15.  Effect of different injection positions on outer boundary of spray distribution (q=10,T=300 K,Ma=0.182)

    图 16  喷射位置对液雾分布外轨迹的影响(q=30,T=300 K,Ma=0.182)

    Figure 16.  Effect of different injection positions on outer boundary of spray distribution (q=30,T=300 K,Ma=0.182)

    图 17  喷射位置对液雾分布外轨迹的影响(q=50,T=300 K,Ma=0.182)

    Figure 17.  Effect of different injection positions on outer boundary of spray distribution (q=50,T=300 K,Ma=0.182)

    图 18  喷射位置对液雾分布内轨迹的影响(q=10,T=300 K,Ma=0.182)

    Figure 18.  Effect of different injection positions on inner boundary of spray distribution (q=10,T=300 K,Ma=0.182)

    图 19  喷射位置对液雾分布内轨迹的影响(q=30,T=300 K,Ma=0.182)

    Figure 19.  Effect of different injection positions on inner boundary of spray distribution (q=30,T=300 K,Ma=0.182)

    图 20  喷射位置对液雾分布内轨迹的影响(q=50,T=300 K,Ma=0.182)

    Figure 20.  Effect of different injection positions on inner boundary of spray distribution (q=50,T=300 K,Ma=0.182)

    图 21  喷射位置对液雾分布内轨迹的影响(q=70,T=300 K,Ma=0.182)

    Figure 21.  Effect of different injection positions on inner boundary of spray distribution (q=70,T=300 K,Ma=0.182)

  • [1] LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced after-burner designs[R]. AIAA 2004-4192, 2004.
    [2] 胡晓煜. 美国全面实施下一代军用航空发动机技术发展计划[J]. 国际航空,2007(12): 40-42.

    HU Xiaoyu. US’ new advanced turbine engine technology development program[J]. International Aviation,2007(12): 40-42. (in Chinese)
    [3] EBRAHIMI H B. Overview of gas turbine augmentor design, operation and combustion oscillation[R]. Toronto, Canada: 19th Annual Conference on Liquid Atomization and Spray Systems, 2006.
    [4] 张孝春,孙雨超,刘涛. 先进加力燃烧室设计技术综述[J]. 航空发动机,2014,40(2): 24-30,60. doi: 10.13477/j.cnki.aeroengine.2014.02.006

    ZHANG Xiaochun,SUN Yuchao,LIU Tao. Summary of advanced afterburner design technology[J]. Aeroengine,2014,40(2): 24-30,60. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2014.02.006
    [5] 孙雨超,张志学,李江宁,等. 一体化加力燃烧室方案设计及数值研究[J]. 航空科学技术,2011(4): 71-74. doi: 10.3969/j.issn.1007-5453.2011.04.021

    SUN Yuchao,ZHANG Zhixue,LI Jiangning,et al. Design and numerical research of integrated rear frame and afterburner[J]. Aeronautical Science and Technology,2011(4): 71-74. (in Chinese) doi: 10.3969/j.issn.1007-5453.2011.04.021
    [6] 季鹤鸣, 樊于军, 杨茂林. 新型内突扩加力燃烧室方案可行性分析[J]. 航空发动机, 2006, 32(1); 35-37.

    JI Heming, FAN Yujun, YANG Maolin. Feasibility analysis of a new inner dumped afterburner concept[J]. Aeroengine, 2006, 32(1): 35-37. (in Chinese)
    [7] CLEMENTS T R, GRAVES C B. Augmentor burner: US5385015A[P]. 1995-01-31.
    [8] CLEMENTS T R. Method for distributing fuel within an augmentor: US5685140[P]. 1997-11-11.
    [9] KOSHOFFER J M. Method and apparatus for gas turbine engine: US6983601[P]. 2006-01-10.
    [10] ZINN B T, VAKILI A D, YU F M. Stability limits and fuel placement in carbureted fuel injection system (CFIS) flameholder[R]. AIAA 86-0280, 1986.
    [11] LOVETT J A, CROSS C, LUBARSKY E, et al. A review of mechanisms controlling bluff-body stabilized flames with closely-coupled fuel injection[R]. ASME GT2011-46676, 2011.
    [12] 刘广海,刘玉英,谢奕. 凹腔对一体化支板火焰稳定器燃烧性能的影响[J]. 航空动力学报,2018,33(8): 1838-1844. doi: 10.13224/j.cnki.jasp.2018.08.006

    LIU Guanghai,LIU Yuying,XIE Yi. Effect of cavity on combustion characteristics of integrated strut flame stabilizer[J]. Journal of Aerospace Power,2018,33(8): 1838-1844. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.08.006
    [13] 刘玉英,周春阳,谢奕,等. 一体化凹腔支板稳定器贫油熄火性能初步试验[J]. 航空动力学报,2020,35(1): 75-80. doi: 10.13224/j.cnki.jasp.2020.01.009

    LIU Yuying,ZHOU Chunyang,XIE Yi,et al. Preliminary experiment on the lean blow-off of an integrated cavity-based struct flameholder[J]. Journal of Aerospace Power,2020,35(1): 75-80. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.01.009
    [14] 刘广海,刘玉英. 翼型支板火焰稳定器结构参数的研究[J]. 航空动力学报,2015,30(6): 1350-1356. doi: 10.13224/j.cnki.jasp.2015.06.009

    LIU Guanghai,LIU Yuying. Investigation on structural parameters of airfoil shaped strut flame stabilizer[J]. Journal of Aerospace Power,2015,30(6): 1350-1356. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.06.009
    [15] 罗莲军,刘玉英,张文龙,等. 喷油杆与凹腔支板稳定器近距匹配雾化特性[J]. 航空动力学报,2013,28(11): 2462-2467. doi: 10.13224/j.cnki.jasp.2013.11.011

    LUO Lianjun,LIU Yuying,ZHANG Wenlong,et al. Atomization characteristics of fuel injector and cavity-based strut flame stabilizer under close-range matching condition[J]. Journal of Aerospace Power,2013,28(11): 2462-2467. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.11.011
    [16] 刘玉英,周弘毅,谢奕,等. 喷油杆和凹腔支板稳定器近距匹配的液雾分布可视化[J]. 航空动力学报,2018,33(3): 549-556. doi: 10.13224/j.cnki.jasp.2018.03.005

    LIU Yuying,ZHOU Hongyi,XIE Yi,et al. Visualization on spray distribution of close-coupled fuel injector and struct with cavity flameholder system[J]. Journal of Aerospace Power,2018,33(3): 549-556. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.03.005
    [17] 黄勇, 林宇震, 樊未军. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社, 2009.
    [18] 林宇震,李林,张弛,等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报,2014,35(1): 46-57.

    LIN Yuzhen,LI Lin,ZHANG Chi,et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica Sinica,2014,35(1): 46-57. (in Chinese)
    [19] ELSHAMY O M. Experimental investigations of steady and dynamic behavior of transverse liquid jets[D]. Cincinnati, US: University of Cincinnati, 2007.
    [20] 金仁瀚,张铮,刘勇,等. 横向加热气流中直射式喷嘴侧喷雾化特性研究[J]. 推进技术,2013,34(5): 658-663. doi: 10.13675/j.cnki.tjjs.2013.05.014

    JIN Renhan,ZHANG Zheng,LIU Yong,et al. Experimental study on atomization characteristics of simple nozzle in heating cross flow[J]. Journal of Propulsion Technology,2013,34(5): 658-663. (in Chinese) doi: 10.13675/j.cnki.tjjs.2013.05.014
    [21] LEFEBVRE A H. Atomization and spray[M]. New York, US: Hemisphere Publishing Corporation, 1989.
    [22] AMIRREZA A,NASSER A. Global droplet size in liquid jet in a high-temperature and high-pressure crossflow[J]. AIAA Journal,2019,57(3): 1260-1273. doi: 10.2514/1.J056496
    [23] 李晨阳,吴里银,李春,等. 超声速气流中凹腔对液体射流穿透深度的影响[J]. 航空动力学报,2018,33(1): 232-238. doi: 10.13224/j.cnki.jasp.2018.01.028

    LI Chenyang,WU Liyin,LI Chun,et al. Efffect of cavity on liquid jet penetration in supersonic crossflow[J]. Journal of Aerospace Power,2018,33(1): 232-238. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.01.028
    [24] 谢凤英. 数字图像处理及应用[M]. 北京: 电子工业出版社, 2016.
    [25] AMIGHI A,ESLAMIAN M. Atomization of liquid jet in high-pressure and high-temperature subsonic crossflow[J]. AIAA Journal,2014,52(7): 1374-1385. doi: 10.2514/1.J052548
    [26] WU P K,KIRKENDALL K A,FULLER R P,et al. Spray structures of liquid fuel jets atomized in subsonic crossflows[J]. Journal of Propulsion and Power,1988,14(2): 173-182.
    [27] YOON H J,HONG J G,LEE C. Correlations for penetration height of single and double liquid jets in cross flow under high-temperature conditions[J]. Atomization and Sprays,2011,21(8): 673-686. doi: 10.1615/AtomizSpr.2012004212
  • 加载中
图(21)
计量
  • 文章访问数:  240
  • HTML浏览量:  84
  • PDF量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-17
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回