留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于接触刚度分布特性的叶片振动响应分析

钱佳绮 董少静 高鹏新 申秀丽

钱佳绮, 董少静, 高鹏新, 等. 基于接触刚度分布特性的叶片振动响应分析[J]. 航空动力学报, 2023, 38(4):955-963 doi: 10.13224/j.cnki.jasp.20210598
引用本文: 钱佳绮, 董少静, 高鹏新, 等. 基于接触刚度分布特性的叶片振动响应分析[J]. 航空动力学报, 2023, 38(4):955-963 doi: 10.13224/j.cnki.jasp.20210598
QIAN Jiaqi, DONG Shaojing, GAO Pengxin, et al. Analysis of blade vibration response based on contact stiffness distribution characteristics[J]. Journal of Aerospace Power, 2023, 38(4):955-963 doi: 10.13224/j.cnki.jasp.20210598
Citation: QIAN Jiaqi, DONG Shaojing, GAO Pengxin, et al. Analysis of blade vibration response based on contact stiffness distribution characteristics[J]. Journal of Aerospace Power, 2023, 38(4):955-963 doi: 10.13224/j.cnki.jasp.20210598

基于接触刚度分布特性的叶片振动响应分析

doi: 10.13224/j.cnki.jasp.20210598
详细信息
    作者简介:

    钱佳绮(1998-),女,硕士,主要从事航空发动机结构强度研究

    通讯作者:

    董少静(1986-),女,副研究员,博士,主要从事航空发动机热端部件结构、材料及工艺方面的研究。E-mail:dshj0321@163.com

  • 中图分类号: V232.4

Analysis of blade vibration response based on contact stiffness distribution characteristics

  • 摘要:

    根据接触刚度在锯齿形叶冠结合面上非均匀分布的特性,提出一种基于定义和有限元计算相结合的接触刚度计算方法。在此基础上,将微-宏滑动摩擦模型作为叶冠结合面处的摩擦模型,推导微滑动和宏滑动状态下摩擦力表达式。利用谐波平衡法将非线性摩擦力转化为等效刚度和等效阻尼进行振动特性分析。针对叶冠结合面相对位移幅值动态变化的特点,提出了一种迭代求解的振动响应分析方法。与文献提供的带摩擦阻尼结构悬臂梁振动响应实验数据相比,共振峰附近的振幅误差为1.99 mm,相对误差为3.9%。振幅的最大误差为5.53 mm,出现在远离共振峰的位置,验证了响应分析方法的可行性。将该方法应用于带冠叶片上,结果表明当激振力频率为812.3 Hz时,振幅为0.56 mm。

     

  • 图 1  叶冠结合面的接触应力

    Figure 1.  Stress at contact surface of blade shroud

    图 2  叶冠局部坐标系

    Figure 2.  Local coordinate system of blade shroud

    图 3  叶冠结合面间的接触刚度

    Figure 3.  Contact stiffness between interfaces of shroud

    图 4  微-宏滑动摩擦模型迟滞回线

    Figure 4.  Hysteresis curve of micro-macro-slide model

    图 5  叶片简化模型

    Figure 5.  Simplified blisk model

    图 6  谐波平衡法与微-宏滑动模型摩擦力比较

    Figure 6.  Comparison of friction between harmonic balance method and micro-macro-slide model

    图 7  MATRIX27单元对称矩阵系数

    Figure 7.  Symmetric matrix coefficients of MATRIX27 element

    图 8  施加MATRIX27单元示意图

    Figure 8.  Schematic diagram of applying MATRIX27 element

    图 9  带冠叶片振型

    Figure 9.  Vibration modes of shrouded blade

    图 10  振动响应分析流程

    Figure 10.  Vibration response analysis process

    图 11  带有摩擦阻尼结构的悬臂梁模型

    Figure 11.  Cantilever beam model with friction damping structure

    图 12  本文方法与文献[13]结果对比

    Figure 12.  Comparison of method in this paper and results of Ref. [13]

    图 13  叶片激振力施加位置

    Figure 13.  Position where blade excitation force is applied

    图 14  激振点$ Y' $方向位移的频响曲线

    Figure 14.  Frequency response curve of $ Y' $ direction displacement at excitation point

    表  1  叶冠静力学分析结果

    Table  1.   Statics analysis results of blade shroud

    项目结合面网格尺寸/mm
    0.50.250.125
    结合面最大应力/MPa264.74394.29502.70
    结合面最大位移/mm0.343190.343170.34323
    位移的相对误差/%−0.00580.0175
    下载: 导出CSV
  • [1] 谢永慧,孟庆集. 汽轮机叶片疲劳寿命预测方法的研究[J]. 西安交通大学学报,2002,36(9): 912-915.

    XIE Yonghui,MENG Qingji. Numerical model for steam turbine blade fatigue life[J]. Journal of Xi’an Jiaotong University,2002,36(9): 912-915. (in Chinese)
    [2] 左焕. 整圈自带冠叶片系统接触碰撞特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.

    ZUO Huan. Research on contact collision characteristics for the whole circle integrally shrouded blade[D]. Harbin: Harbin Engineering University, 2014. (in Chinese)
    [3] 洪杰,杨鑫,陈璐璐,等. 基于接触状态分析的叶冠阻尼评估与改进设计[J]. 北京航空航天大学学报,2012,38(5): 681-687.

    HONG Jie,YANG Xin,CHEN Lulu,et al. Damping assessment and improving design of blade shrouds based on contact states[J]. Journal of Beijing University of Aeronautics and Astronautics,2012,38(5): 681-687. (in Chinese)
    [4] OZOLI R,OZOLI I,RAMĀNA L. Turbine blade of gas turbine engine additional unloading by changing the layout of the gravity centre of the shroud shelf[J]. Transport and Aerospace Engineering,2019,7(2): 14-23.
    [5] 刘丽兰,刘宏昭,吴子英,等. 机械系统中摩擦模型的研究进展[J]. 力学进展,2008,38(2): 201-213.

    LIU Lilan,LIU Hongzhao,WU Ziying,et al. Research progress of friction model in mechanical system[J]. Advances in Mechanics,2008,38(2): 201-213. (in Chinese)
    [6] BURDEKIN M,COWLEY A,BACK N. An elastic mechanism for the micro-sliding characteristics between contacting machined surfaces[J]. Journal of Mechanical Engineering Science,2006,20(3): 121-127.
    [7] JOHNSON K L. 接触力学[M]. 徐秉业, 罗学富, 刘信声, 等, 译. 北京: 高等教育出版社, 1991.
    [8] MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics,1949,16(9): 259-268.
    [9] DERESIEWICZ H. Oblique contact of nonspherical elastic bodies[J]. Journal of Applied Mechanics,1957,24(4): 623-624. doi: 10.1115/1.4011612
    [10] LIU Yalin,BO Shangguan,XU Zili. A friction contact stiffness model of fractal geometry in forced response analysis of a shrouded blade[J]. Nonlinear Dynamics,2012,70(3): 2247-2257. doi: 10.1007/s11071-012-0615-8
    [11] ZHAO Jiazhe, WANG Yanrong, LUO Yanbin, et al. A vibration damping analysis method of turbine blade shroud dampers based on a given eigen-mode[C]//Proceedings of the ASME 2018 International Design Engineering. Quebec, Canada: ASME, 2018: 1-11.
    [12] 陈璐璐,张大义,文敏,等. 带凸肩风扇叶片振动特性及设计方法研究[J]. 推进技术,2015,36(9): 1389-1394.

    CHEN Lulu,ZHANG Dayi,WEN Min,et al. Dynaical effects of shrouds on fan blade vibration and its corresponding design method[J]. Journal of Propulsion Technology,2015,36(9): 1389-1394. (in Chinese)
    [13] BERTHILLIER M,DUPONT C,MONDAL R,et al. Blades forced response analysis with friction dampers[J]. Journal of Vibration and Acoustics,1998,120(2): 468-474. doi: 10.1115/1.2893853
    [14] 黄平, 郭丹, 温诗铸. 界面力学[M]. 北京: 清华大学出版社, 2013.
    [15] 申秀丽,高鹏新,董少静,等. 带锯齿形叶冠叶片接触应力计算及静强度分析[J]. 航空动力学报,2020,35(4): 732-743. doi: 10.13224/j.cnki.jasp.2020.04.007

    SHEN Xiuli,GAO Pengxin,DONG Shaojing,et al. Contact stress calculation and static strength analysis of zig-zag shrouded blade[J]. Journal of Aerospace Power,2020,35(4): 732-743. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.04.007
    [16] ZHANG S,SHEN X,DONG S,et al. A method to analyze the contact stress of dovetail attachments in aeroengine[J]. Journal of Engineering for Gas Turbines and Power,2019,141(2): 022505.1-022505.10.
    [17] 靳顺. 摩擦阻尼建模及涡轮叶片结构减振分析[D]. 北京: 北京航空航天大学, 2015.

    JIN Shun. Friction damping modeling and vibration reduction research in gas-turbine structure[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [18] 张建伟, 白海波, 李昕. ANSYS 14.0超级学习手册[M]. 北京: 人民邮电出版社, 2013: 242-243.
    [19] 康佳豪,徐超,李东武,等. 基于谐波平衡-时频转换法的摩擦振子稳态响应分析[J]. 振动与冲击,2020,39(12): 170-176, 205.

    KANG Jiahao,XU Chao,LI Dongwu,et al. Analysis of steady responses for a frictional oscillator based on the harmonic balance-alternating frequency/time domain method[J]. Journal of Vibration and Shock,2020,39(12): 170-176, 205. (in Chinese)
    [20] 朱永新. 带冠叶片摩擦减振特性研究[D]. 南京: 南京航空航天大学, 2007.

    ZHU Yongxin. Research on characteristic of the forced response of shrouded blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  124
  • HTML浏览量:  75
  • PDF量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 网络出版日期:  2023-02-11

目录

    /

    返回文章
    返回