留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种耐高温多层热防护结构的优化设计与性能

王飞 王秦阳 孙创 康宏琳

王飞, 王秦阳, 孙创, 等. 一种耐高温多层热防护结构的优化设计与性能[J]. 航空动力学报, 2023, 38(5):1075-1082 doi: 10.13224/j.cnki.jasp.20210601
引用本文: 王飞, 王秦阳, 孙创, 等. 一种耐高温多层热防护结构的优化设计与性能[J]. 航空动力学报, 2023, 38(5):1075-1082 doi: 10.13224/j.cnki.jasp.20210601
WANG Fei, WANG Qinyang, SUN Chuang, et al. Optimization design and performance for multi-layer thermal protection structure at high temperature[J]. Journal of Aerospace Power, 2023, 38(5):1075-1082 doi: 10.13224/j.cnki.jasp.20210601
Citation: WANG Fei, WANG Qinyang, SUN Chuang, et al. Optimization design and performance for multi-layer thermal protection structure at high temperature[J]. Journal of Aerospace Power, 2023, 38(5):1075-1082 doi: 10.13224/j.cnki.jasp.20210601

一种耐高温多层热防护结构的优化设计与性能

doi: 10.13224/j.cnki.jasp.20210601
基金项目: 国家自然科学基金(51776053)
详细信息
    作者简介:

    王飞(1993-),男,博士生,主要从事飞行器高温防隔热结构研究

    通讯作者:

    孙创(1981-),男,副教授,博士,主要从事高温热物性参数测量、飞行器热分析与热控、红外杂散辐射分析与抑制的研究。E-mail:sunc@hit.edu.cn

  • 中图分类号: V414.6

Optimization design and performance for multi-layer thermal protection structure at high temperature

  • 摘要:

    为解决高速飞行器飞行过程中剧烈的气动加热问题,以“高温防热层+隔热缓冲层+核心隔热层”顺序设计的一体化多层热防护结构的传热过程为研究对象,建立了高温环境下热防护结构内部一维非稳态导热-辐射耦合传热模型,通过数值模拟计算得到了高温环境下热防护结构各层的温度分布。利用不同热防护材料的隔热性能差异,针对构建的热防护结构,提出了在满足一定约束条件下,以轻质多层热防护结构总质量和总厚度为目标函数的优化设计方案,得到了多层结构的最优几何参数,并通过实验考核了优化后热防护结构的防隔热性能。实验表明:该结构可耐受1473 K的高温1800 s而背温不超过370 K。

     

  • 图 1  不同温度下材料隔热性能的表征值对比

    Figure 1.  Comparison of characteristic values of thermal insulation performance of materials at different temperatures

    图 2  实验测量原理图

    Figure 2.  Experimental measurement principle diagram

    图 3  热防护结构一维简化模型

    Figure 3.  One-dimensional simplified model of thermal protection structure

    图 4  某飞行器飞行过程外表面温度变化[22]

    Figure 4.  Surface temperature variation of an aircraft during flight[22]

    图 5  $T_{1 \max } (h_{1}, h_{2}) $曲面图的等温线投影(单位:K)

    Figure 5.  Isotherm projection of $T_{1 \max } (h_{1}, h_{2}) $ surface graph (unit:K)

    图 6  $T_{2 \max } (h_{1}, h_{2}) $曲面图的等温线投影(单位:K)

    Figure 6.  Isotherm projection of $T_{2 \max } (h_{1}, h_{2}) $ surface graph (unit:K)

    图 7  满足质量M最小的h1h2最优组合投影

    Figure 7.  Optimal combination projection of h1 and h2 that satisfies the smallest quality M

    图 8  满足厚度H最小的h1h2最优组合投影

    Figure 8.  Optimal combination projection of h1 and h2 that satisfies the smallest thickness H

    图 9  隔热棉毡和纳米复合材料接触界面温度变化过程

    Figure 9.  Temperature evolution at the contact interface of thermal insulation felts and nanocomposite material

    图 10  优化后结构底部界面温度变化过程

    Figure 10.  Temperature evolution at the bottom interface of the structure after optimization

    图 11  不同时间各层材料的温度分布

    Figure 11.  Temperature distribution of each layer of material at different times

    表  1  热防护材料热物性参数

    Table  1.   Thermophysical parameters for different thermal protection materials

    材料ρ/(kg/m3cp/(J/(kg·K))λeff/(W/(m·K))ε
    隔热棉毡260.0851.1λ1=a1T+b1
    纳米复合材料310.5871.2λ2=a2T+b2
    陶瓷面板1806.41115.3λ3=a3T+b30.6
    下载: 导出CSV
  • [1] 邢亚娟,孙波,高坤,等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺,2018,48(4): 9-15. doi: 10.12044/j.issn.1007-2330.2018.04.002

    XING Yajuan,SUN Bo,GAO Kun,et al. Research status of therma protection system and thermal protection materials for aerospace vehicles[J]. Aerospace Materials and Technology,2018,48(4): 9-15. (in Chinese) doi: 10.12044/j.issn.1007-2330.2018.04.002
    [2] 陈雄昕,刘卫华,罗智胜,等. 高超音速飞行器气动热研究进展[J]. 航空兵器,2014(6): 8-13. doi: 10.3969/j.issn.1673-5048.2014.06.002

    CHEN Xiongxin,LIU Weihua,LUO Zhisheng,et al. Research advances of aerodynamic heating for hypersonic aircraft[J]. Aero Weaponry,2014(6): 8-13. (in Chinese) doi: 10.3969/j.issn.1673-5048.2014.06.002
    [3] 邱惠中. 美国空天飞机用先进材料最新进展[J]. 宇航材料工艺,1994,24(3): 5-9.

    QIU Huizhong. The latest development of advanced materials for U. S. aerospace aircraft[J]. Aerospace Materials and Technology,1994,24(3): 5-9. (in Chinese)
    [4] BUFFENOIR F,ZEPPA C,PICHON T,et al. Development and flight qualification of the C-SiC thermal protection systems for the IXV[J]. Acta Astronautica,2016,124(7/8): 85-89.
    [5] ALBANO M,MICHELI D,GRADONI G,et al. Electromagnetic shielding of thermal protection system for hypersonic vehicles[J]. Acta Astronautica,2013,87(6/7): 30-39.
    [6] 徐世南,吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹,2019,412(4): 48-55. doi: 10.16338/j.issn.1009-1319.20180344

    XU Shinan,WU Cuisheng. Research progress of thermal protection structure of hypersonic vehicle[J]. Aerodynamic Missile Journal,2019,412(4): 48-55. (in Chinese) doi: 10.16338/j.issn.1009-1319.20180344
    [7] HAIM Y,WEISS Y,LETAN R. Effect of spacers on the thermal performance of an annular multi-layer insulation[J]. Applied Thermal Engineering,2014,65(1/2): 418-421. doi: 10.1016/j.applthermaleng.2014.01.041
    [8] 陈立明,戴政,谷宇,等. 轻质多层热防护结构的一体化优化设计研究[J]. 力学学报,2011,43(2): 289-295. doi: 10.6052/0459-1879-2011-2-lxxb2009-500

    CHEN Liming,DAI Zheng,GU Yu,et al. Integrated optimization design of light-weight multi-layer protection structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(2): 289-295. (in Chinese) doi: 10.6052/0459-1879-2011-2-lxxb2009-500
    [9] WHITE D M,WICKLEIN M,CLEGG R A,et al. Multi-layer insulation material models suitable for hypervelocity impact simulations[J]. International Journal of Impact Engineering,2008,35(12): 1853-1860. doi: 10.1016/j.ijimpeng.2008.07.017
    [10] GIEGERICH M J. Thermal protection systems for all-weather reusable launch vehicles[C]//Space Transportation Materials and Structures Technology Workshop. Hampton, US: NASA Langley Research Center, 1993: 363-367.
    [11] 王璐,王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺,2016,46(1): 1-6. doi: 10.3969/j.issn.1007-2330.2016.01.001

    WANG Lu,WANG Youli. Research progress and trend analysis of hypersonic vehicle thermal protection technology[J]. Aerospace Materials and Technology,2016,46(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1007-2330.2016.01.001
    [12] 解维华,张博明,杜善义. 金属热防护系统设计的有限元分析[J]. 航空学报,2006,27(2): 897-902.

    XIE Weihua,ZHANG Boming,DU Shanyi. Finite element analysis of metallic thermal protection systems design[J]. Acta Aeronautica et Astronautica Sinica,2006,27(2): 897-902. (in Chinese)
    [13] 赵剑,谢宗蕻,张磊. 高温合金热防护系统设计与分析[J]. 宇航学报,2008,29(5): 217-223. doi: 10.3873/j.issn.1000-1328.2008.05.041

    ZHAO Jian,XIE Zonghong,ZHANG Lei. Design and analysis of super alloy metallic thermal protection system[J]. Journal of Astronautics,2008,29(5): 217-223. (in Chinese) doi: 10.3873/j.issn.1000-1328.2008.05.041
    [14] 李健,张凡,张丽娟,等. 一种耐高温多层热防护组件结构设计与性能研究[J]. 北京理工大学学报,2019,39(10): 1051-1056. doi: 10.15918/j.tbit1001-0645.2019.10.010

    LI Jian,ZHANG Fan,ZHANG Lijuan,et al. Structure design and performance study of a multi-layer thermal protection component with high temperature endurance[J]. Transactions of Beijing Institute of Technology,2019,39(10): 1051-1056. (in Chinese) doi: 10.15918/j.tbit1001-0645.2019.10.010
    [15] ALIFANOV O M,BUDNIK S A,NENAROKOMOV A V,et al. Design of thermal protection based on open cell carbon foam structure optimization[J]. Applied Thermal Engineering,2020,173: 115252.1-115252.10.
    [16] XIE Dan,DONG Bin,JING Xingjian. Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel[J]. Aerospace Science and Technology,2020,106: 106170.1-106170.16.
    [17] LIU Dong,LI Jiapeng,ZHANG Ping,et al. Multilayered epoxy composites by a macroscopic anisotropic design strategy with excellent thermal protection[J]. Journal of Materials Science,2020,55(30): 14798-14806. doi: 10.1007/s10853-020-05047-x
    [18] DOU Lüye,CHENG Xiaota,ZHANG Xinxin,et al. Temperature-invariant super elastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation[J]. Journal of Materials Chemistry A,2020,8(16): 7775-7783. doi: 10.1039/D0TA01092H
    [19] SHI Shenbo,CHEN Yong,DAI Cunxi,et al. Modeling the high temperature behavior of all-composite, corrugated-core sandwich panels undergoing ablation[J]. Thin-Walled Structures,2021,164: 107742.1-107742.10. doi: 10.1016/j.tws.2021.107742
    [20] 刘华. 纳米复合隔热材料高温耦合传热实验测量及物性参数辨识[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LIU Hua. Experiment on coupled heat transfer and thermal property identification of nanocomposite insulation at high temperature[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [21] LIU Hua,XIA Xinlin,XIE Xiangqian,et al. Experiment and identification of thermal conductivity and extinction coefficient of silica aerogel composite[J]. International Journal of Thermal Sciences,2017,121: 192-203. doi: 10.1016/j.ijthermalsci.2017.07.014
    [22] 钱炜祺,蔡金狮. 再入航天飞机表面热流密度辨识[J]. 宇航学报,2000,21(4): 1-6. doi: 10.3321/j.issn:1000-1328.2000.04.001

    QIAN Weiqi,CAI Jinshi. Surface heat flux identification of reentry space shuttle[J]. Journal of Astronautics,2000,21(4): 1-6. (in Chinese) doi: 10.3321/j.issn:1000-1328.2000.04.001
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  463
  • HTML浏览量:  70
  • PDF量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 网络出版日期:  2022-12-20

目录

    /

    返回文章
    返回