留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带旁通的双S弯进气道设计及性能

童佳慧 李博 苏嘉殷 徐猛 邱宇宸

童佳慧, 李博, 苏嘉殷, 等. 带旁通的双S弯进气道设计及性能[J]. 航空动力学报, 2023, 38(5):1166-1175 doi: 10.13224/j.cnki.jasp.20210608
引用本文: 童佳慧, 李博, 苏嘉殷, 等. 带旁通的双S弯进气道设计及性能[J]. 航空动力学报, 2023, 38(5):1166-1175 doi: 10.13224/j.cnki.jasp.20210608
TONG Jiahui, LI Bo, SU Jiayin, et al. Design and performance of serpentine inlet with bypass[J]. Journal of Aerospace Power, 2023, 38(5):1166-1175 doi: 10.13224/j.cnki.jasp.20210608
Citation: TONG Jiahui, LI Bo, SU Jiayin, et al. Design and performance of serpentine inlet with bypass[J]. Journal of Aerospace Power, 2023, 38(5):1166-1175 doi: 10.13224/j.cnki.jasp.20210608

带旁通的双S弯进气道设计及性能

doi: 10.13224/j.cnki.jasp.20210608
详细信息
    作者简介:

    童佳慧(1997-),女,硕士生,主要从事飞行器进气道设计和研究。E-mail:tjhhhh@nuaa.edu.cn

    通讯作者:

    李博(1974-),男,副教授、硕士生导师,博士,主要从事飞行器进气道设计及螺旋桨设计与仿真研究。E-mail:leebo@nuaa.edu.cn

  • 中图分类号: V211.48

Design and performance of serpentine inlet with bypass

  • 摘要:

    针对一种带旁通的双S弯进气道开展了气动设计和性能仿真研究。探索了改变第一S弯长度对进气道的影响,通过流场流动和砂粒轨迹的分析,对初始设计的模型进行修正,然后在修正后的基准模型的基础上,采用数值模拟方法,重点研究了不同扫气比和过渡截面面积比对进气道管道内流动特性和排砂效率的影响。结果表明:第一S弯的长度过小则气动性能好但不利于排砂,过大则气动性能差但排砂效果好。过渡截面面积比在减小的过程中,进气道气动性能略微下降。当形成分离涡后,总压损失迅速增大,但出口总压畸变指数降低。面积比过大或者过小都不利于进气道排砂。随着扫气比增大,排砂性能提高,进气道出口总压恢复基本稳定,畸变增大。

     

  • 图 1  尾吊短舱布局无人机

    Figure 1.  Tail mounted unmanned aerial vehicle

    图 2  进气道基准模型

    Figure 2.  Benchmark model of inlet

    图 3  计算域及边界条件

    Figure 3.  Computational domain and boundary conditions

    图 4  沿周向不同角度的压力系数分布

    Figure 4.  Pressure coefficient distributions at different angles along the circumferential direction

    图 5  不同截面压力系数分布

    Figure 5.  Pressure coefficient distributions on different sections

    图 6  壁面沿程压力分布

    Figure 6.  Pressure distributions along the wall

    图 7  进气道出口气动性能

    Figure 7.  Outlet aerodynamic performance of the inlet

    图 8  对称面马赫数和流线分布

    Figure 8.  Mach number contours and streamlines on symmetry plane

    图 9  各长度比下的排砂效率

    Figure 9.  Sand separation efficiencies under different length ratios

    图 10  砂粒运动轨迹(Ls1=0.5L

    Figure 10.  Sand particle trajectories (Ls1=0.5L

    图 11  优化后的基准模型部分型面

    Figure 11.  Partial profile of the optimized benchmark model

    图 12  不同面积比的进气道气动性能

    Figure 12.  Inlet aerodynamic performance with different area ratios

    图 13  进气道各截面马赫数及流线分布

    Figure 13.  Mach number contours and streamlines on inlet sections

    图 14  排砂效率

    Figure 14.  Sand separation efficiencies

    图 15  AC砂粒轨迹

    Figure 15.  Trajectories of AC sand particles

    图 16  C砂粒轨迹

    Figure 16.  Trajectories of C sand particles

    图 17  不同扫气比下的出口气动性能

    Figure 17.  Outlet aerodynamic performance with different scavenge flow ratio

    图 18  不同扫气比下两种砂粒分离效率

    Figure 18.  Separation efficiencies of two kinds of sand particles with different scavenge flow ratios

    图 19  对称面马赫数分布(α=0.573)

    Figure 19.  Mach number contours and streamlines on symmetry plane (α=0.573)

    表  1  短半轴变化后的无量纲面积比和偏距比

    Table  1.   Dimensionless area ratio and offset ratio after the alteration of semiminor axis

    短半轴改变长度/mm$\alpha $$\xi $
    −100.4781.100
    −50.5251.075
    00.5731.050
    50.6211.025
    100.6691.000
    下载: 导出CSV

    表  2  仿真与实验所得性能参数对比表

    Table  2.   Performance parameters obtained from simulation and experiment

    参数实验[21]仿真
    总压恢复系数0.99100.9909
    AC砂分离效率/%77.783.7
    C砂分离效率/%91.498.2
    下载: 导出CSV

    表  3  进气道主要设计参数

    Table  3.   Main design parameters of the inet

    参数数值
    进气道入口直径D1/mm200
    进气道出口直径D2/mm153
    旁通出口直径D3/mm60
    下载: 导出CSV

    表  4  不同扫气比下的出口参数变化

    Table  4.   Variatioans of outlet parameters under different scavenge flow ratios

    扫气比/%旁通质量
    流量/(kg/s)
    主流道出口
    压力/Pa
    旁通出口
    压力/Pa
    100.127991278.696560.2
    120.158391296.494648.7
    140.182791347.792251.0
    160.205891258.590326.8
    180.229291295.886864.8
    下载: 导出CSV
  • [1] 时磊,岳剑飞. 沙尘对直升机的危害及预防[J]. 科技资讯,2014,12(13): 122-124. doi: 10.3969/j.issn.1672-3791.2014.13.084

    SHI Lei,YUE Jianfei. Harm and prevention of dust on helicopters[J]. Science and Technology Information,2014,12(13): 122-124. (in Chinese) doi: 10.3969/j.issn.1672-3791.2014.13.084
    [2] LEE C C, BOEKICKER C. Subsonic diffuser design and performance for advanced fighter aircraft[R]. AIAA 85-3073, 1985.
    [3] 王庆林. 超椭圆进气道的设计[J]. 洪都科技,1990(4): 1-6.

    WANG Qinglin. Design of super elliptical inlet[J]. Hongdu Science and Technology,1990(4): 1-6. (in Chinese)
    [4] 李岳锋,杨青真,孙志强. 超椭圆S形进气道的设计及气动性能研究[J]. 计算机仿真,2011,28(3): 82-85. doi: 10.3969/j.issn.1006-9348.2011.03.020

    LI Yuefeng,YANG Qingzhen,SUN Zhiqiang. Design of super elliptical S-shaped inlet and analysis of aerodynamic performance[J]. Computer Simulation,2011,28(3): 82-85. (in Chinese) doi: 10.3969/j.issn.1006-9348.2011.03.020
    [5] 黄晨,谢文忠,靖建朋. 基于Nurbs曲线的涡控蛇形进气道设计[J]. 航空动力学报,2013,28(10): 2355-2363. doi: 10.13224/j.cnki.jasp.2013.10.025

    HUANG Chen,XIE Wenzhong,JING Jianpeng. Design of vortex controlled serpentine inlet based on NURBS curve[J]. Journal of Aerospace Power,2013,28(10): 2355-2363. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.10.025
    [6] 周慧晨,谭慧俊,李湘萍. 复杂变截面进气道的一种设计方法[J]. 航空动力学报,2009,24(6): 1357-1363. doi: 10.13224/j.cnki.jasp.2009.06.019

    ZHOU Huichen,TAN Huijun,LI Xiangping. Unique design method of subsonic inlet with complex cross-sectional shape[J]. Journal of Aerospace Power,2009,24(6): 1357-1363. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.06.019
    [7] SUN S,TAN H J. Flow characteristics of an ultracompact serpentine inlet with an internal bump[J]. Journal of Aerospace Engineering,2018,31(2): 04017089.1-04017089.11.
    [8] 谢文忠,郭荣伟. 蛇形进气道涡控设计研究[J]. 航空学报,2011,32(10): 1806-1814.

    XIE Wenzhong,GUO Rongwei. Vortex-controlled design research for serpentine inlet[J]. Acta Aeronautica et Astronautica Sinica,2011,32(10): 1806-1814. (in Chinese)
    [9] 宋国磊. 飞翼布局无人机双S弯进气道设计及流动控制技术应用研究[D]. 南京: 南京航空航天大学, 2016.

    SONG Guolei. Double S-shaped inlet design and flow control investigation for all-wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [10] 李立国, 王锁芳. 直升机发动机的进气防护[M]. 北京: 国防工业出版社, 2009.
    [11] 付焱晶. 直升机发动机进气防护装置研究[D]. 沈阳: 东北大学, 2011.

    FU Yanjing. Research on intake protection device of helicopter engine[D]. Shenyang: Northeastern University, 2011. (in Chinese)
    [12] BARTA A B, BENNETT W A, VITTAL B R, et al. Design and development of a compact bifurcated turboprop inlet[R]. AIAA 91-2017, 1991.
    [13] 陈晓,李潞龙,马若龙. 带有腔室旁通道的进气道气动性能试验研究[J]. 航空动力学报,1994,9(3): 42-45,107-108. doi: 10.13224/j.cnki.jasp.1994.03.010

    CHEN Xiao,LI Lulong,MA Ruolong. Experimental experimental study on gasdynamic performance of intake with plenum bypass[J]. Journal of Aerospace Power,1994,9(3): 42-45,107-108. (in Chinese) doi: 10.13224/j.cnki.jasp.1994.03.010
    [14] 周诗睿. 螺旋桨与进气道的气动干扰研究[D]. 南京: 南京航空航天大学, 2019.

    ZHOU Shirui. Research on aerodynamic interference of propeller and inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [15] 王利敏,张彦军,米百刚,等. 涡桨飞机发动机进气道排除异物特性数值研究[J]. 航空工程进展,2020,11(2): 264-271, 278. doi: 10.16615/j.cnki.1674-8190.2020.02.017

    WANG Limin,ZHANG Yanjun,MI Baigang,et al. Numerical simulation on excluding foreign objects from engine inlet of turboprop aircraft[J]. Advances in Aeronautical Engineering,2020,11(2): 264-271, 278. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2020.02.017
    [16] MI Baigang, ZHAN Hao. Numerical simulation on rigid foreign object exclusion in the turboprop engine intake system with a bypass duct[J]. IEEE Access, 2019, 7: 61920-61933.
    [17] 车得福, 李会雄. 多相流及其应用[M]. 1版. 西安: 西安交通大学出版社, 2007: 505-517.
    [18] 胡霄乐. 细弯管内多粒径颗粒的气固两相流动规律分析[D]. 杭州: 浙江工业大学, 2015.

    HU Xiaole. Analysis of gas-solid two-phase flow with multi-sized particles in a thin elbows[D]. Hangzhou: Zhejiang University of Technology, 2015. (in Chinese)
    [19] WAKEMAN T, TABAKOFF W. Measured particle rebound characteristics useful for erosion prediction[C]//Proceedings of Gas Turbine Conference. London: ASME, 1982: 83-95.
    [20] STEVEN R, THEODORE H. A study of the compressible flow through a diffusing S-duct[R]. NASA Technical Memorandum 106411, 1994.
    [21] DUFFY R J, SHATTUCK B F. Integral engine inlet particle separator: Volume Ⅱ design guide[R]. USAAMRDL-TR-75-31B, 1975
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  227
  • HTML浏览量:  53
  • PDF量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-23
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回