留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

民用大涵道比涡扇发动机核心机舱通风冷却试验

尹华莉 单勇 邓明 刘昊 崔玉超 张靖周 谭晓茗

尹华莉, 单勇, 邓明, 等. 民用大涵道比涡扇发动机核心机舱通风冷却试验[J]. 航空动力学报, 2023, 38(6):1350-1359 doi: 10.13224/j.cnki.jasp.20210614
引用本文: 尹华莉, 单勇, 邓明, 等. 民用大涵道比涡扇发动机核心机舱通风冷却试验[J]. 航空动力学报, 2023, 38(6):1350-1359 doi: 10.13224/j.cnki.jasp.20210614
YIN Huali, SHAN Yong, DENG Ming, et al. Ventilation and cooling test of the core nacelle for civil turbofan engine with large bypass ratio[J]. Journal of Aerospace Power, 2023, 38(6):1350-1359 doi: 10.13224/j.cnki.jasp.20210614
Citation: YIN Huali, SHAN Yong, DENG Ming, et al. Ventilation and cooling test of the core nacelle for civil turbofan engine with large bypass ratio[J]. Journal of Aerospace Power, 2023, 38(6):1350-1359 doi: 10.13224/j.cnki.jasp.20210614

民用大涵道比涡扇发动机核心机舱通风冷却试验

doi: 10.13224/j.cnki.jasp.20210614
详细信息
    作者简介:

    尹华莉(1997-),女,硕士生,主要从事大涵道比涡扇发动机进、排气结构设计、换热特性、气动性能研究。E-mail:2379675543@qq.com

  • 中图分类号: V231.1

Ventilation and cooling test of the core nacelle for civil turbofan engine with large bypass ratio

  • 摘要:

    设计了全尺寸大涵道比涡扇发动机核心机舱通风换热试验系统,通过改变冷却气流流量、核心机机匣表面发热量以及核心机舱外壳保温层来研究舱内对流换热特性。试验结果表明:引气流量增加,各段核心机机匣的表面传热系数均随之增大;因前/后舱间存在高阶法兰,前舱引气量增加对后舱机匣表面对流换热几乎没影响;引气流量达到单孔进气0.05 kg/s后,舱内空间温度的改善有限;空间上,前舱上部气流温度比下部高出10 K左右,后舱高出20 K左右;相同引气流量下,机匣表面发热量提高,各段机匣的表面传热系数略提高,差值约10 W/(m2·K);保温层的存在导致核心机机匣通过辐射换热的方式向环境传递的热量减小,此时传热的方式主要依靠对流换热,因此表面传热系数相对提高,差值最大约60 W/(m2·K)。采用最小二乘法获得各段核心机机匣表面传热经验公式,可为大涵道比涡扇发动机核心机舱通风冷却工程设计提供参考。

     

  • 图 1  试验系统原理图

    Figure 1.  Schematic diagram of test system

    图 2  试验模型

    Figure 2.  Test model

    图 3  试验段实物图

    Figure 3.  Photo of test section

    图 4  空间热电偶轴向位置示意

    Figure 4.  Schematic diagram of the axial position of the spatial thermocouple

    图 5  空间热电偶周向位置示意

    Figure 5.  Schematic diagram of the circumferential position of spatial thermocouple

    图 6  引气进气口布局

    Figure 6.  Intake air inlet layout

    图 7  引气流量对机匣表面传热系数影响

    Figure 7.  Influence of intake air flow on the surface heat transfer coefficient of casing

    图 8  工况1空间温度分布

    Figure 8.  Spatial temperature distribution on working condition 1

    图 9  工况3空间温度分布

    Figure 9.  Spatial temperature distribution on working condition 3

    图 10  空间温度测点不同位置的对比

    Figure 10.  Comparison of spatial temperature at different locations

    图 11  不同机匣发热量下机匣表面传热系数对比(后舱进气)

    Figure 11.  Comparison of surface heat transfer coefficient of casing with difference casing heating (rear cabin air intake)

    图 12  拟合的对流换热经验关联式(工况1、2)

    Figure 12.  Empirical correlation of fitting convective heat transfer (condition 1, 2)

    图 13  有/无保温层的机匣表面传热系数对比(后舱进气)

    Figure 13.  Comparison of surface heat transfer coefficient of casing with/without insulation (rear cabin air intake)

    图 14  拟合的对流换热经验关联式(工况4)

    Figure 14.  Empirical correlation of fitting convective heat transfer (condition 4)

    表  1  试验工况

    Table  1.   Test conditions

    试验
    工况
    有无
    保温层
    进气口
    布局
    $\dot{ m }$/(kg/s)机匣
    发热量
    环境
    温度/K
    环境
    压力/Pa
    1布局10.2~1.2303.7100190
    2布局10.2~1.2300.2100880
    3布局20.1~0.6300.1100900
    4布局10.2~1.2299.3100370
    下载: 导出CSV

    表  2  机匣加热温升

    Table  2.   Casing heating temperature rise

    部件名称温升/K
    高发热量低发热量
    压气机增压级7020
    压气机中间级10050
    压气机中间级10050
    压气机高压级12070
    燃烧室14090
    高压涡轮10050
    低压涡轮13080
    低压涡轮13080
    排气段150100
    下载: 导出CSV

    表  3  对流换热经验关联式

    Table  3.   Empirical correlation of convective heat transfer

    机匣分段
    编号
    Nu
    工况1工况2
    10.002Re0.9350.066Re0.451
    20.012Re0.6740.21Re0.433
    30.017Re0.6520.022Re0.576
    40.02Re0.6870.028Re0.632
    50.032Re0.6330.052Re0.578
    60.013Re0.7120.346Re0.438
    70.018Re0.710.078Re0.562
    80.12Re0.6170.175Re0.519
    90.013Re0.7710.024Re0.671
    下载: 导出CSV

    表  4  对流换热经验关联式(工况4)

    Table  4.   Empirical correlation of convective heat transfer (condition 4)

    机匣分段编号Nu
    10.048Re0.578
    20.079Re0.498
    30.466Re0.384
    40.044Re0.619
    50.042Re0.619
    60.02Re0.654
    70.011Re0.754
    80.019Re0.733
    90.009Re0.77
    下载: 导出CSV
  • [1] SEGAL C. Aircraft engine bay cooling and ventilation: design and modeling[J]. Journal of Aircraft,1997,34(1): 141-144. doi: 10.2514/2.2150
    [2] SAWYERS A, NIGEL D. Core compartment ventilation devices for nacelles of gas turbine engines for cooling a core compartment of a gas turbine engine: EP20160205550[P]. 2019-08-07.
    [3] KOZACZUK K. Engine nacelles design: problems and challenges[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2017,231(12): 2259-2265. doi: 10.1177/0954410017706993
    [4] SUCIU G L , CHANDLER J M , PAPA F . Gas turbine engine nacelle ventilation manifold for cooling acces-sories: US10526910B2[P]. 2020-01-07
    [5] 缪国君. 民用飞机短舱内通风冷却系统设计和验证研究[J]. 工程与试验,2015,55(3): 92-94. doi: 10.3969/j.issn.1674-3407.2015.03.025

    MIAO Guojun. Design and verification of the ventilation and cooling system in the nacelle of a civil aircraft[J]. Engineering and Testing,2015,55(3): 92-94. (in Chinese) doi: 10.3969/j.issn.1674-3407.2015.03.025
    [6] 王玉梅,吕美茜. 发动机通风冷却系统的影响因素分析[J]. 工程与实验,2011,51(2): 16-18.

    WANG Yumei,LÜ Meiqian. Influencing factors analysis on engine cooling system[J]. Engineering and Testing,2011,51(2): 16-18. (in Chinese)
    [7] 王涛,李飞行. 航空发动机短舱通风冷却系统设计方案分析及对比[J]. 现代机械,2013,1(13): 40-42.

    WANG Tao,LI Feixing. Analysis and comparison of design schemes of aero-engine nacelle ventilation and cooling system[J]. Modern Machinery,2013,1(13): 40-42. (in Chinese)
    [8] BOILEAU M,DUCHAINE F,SOMMERER Y,et al. Large eddy simulation of heat transfer around a square cylinder using unstructured grids[J]. AIAA Journal,2013,51(2): 372-385. doi: 10.2514/1.J051800
    [9] PENG H,MOHAMMADINIA S. Modeling and simula tion of ventilation and cooling of aircraft piston engine based on genetic algorithm[J]. Engineering Applications of Computational Fluid Mechanics,2020,4(1): 980-988.
    [10] 张亚海,李小宁,谢永奇,等. 动力舱通风冷却性能仿真及其影响因素分析[J]. 科技创新导报,2010(33): 106. doi: 10.3969/j.issn.1674-098X.2010.33.084

    ZHANG Yahai,LI Xiaoning,XIE Yongqi,et al. Simulation of ventilation and cooling performance of power cabin and analysis of its influencing factors[J]. Science and Technology Innovation Guide,2010(33): 106. (in Chinese) doi: 10.3969/j.issn.1674-098X.2010.33.084
    [11] VEDESHKIN G, DUBOVITSKIY A, VERSEUX O, et al. Experimental investigations of hydraulic devices performance in aviation engine compartment[R]. [S.l.]: 28 International Congress of the Aeronautical Sciences. Brisbane, Australia: RAS-Australia Division, 2012: 1-8.
    [12] URIZ J F, REMY B, VERSEUX O, et al. Improved temperature extrapolation methods for powerplant systems[R]. AIAA-2010-4328, 2010.
    [13] URIZ J F,REMY B,VERSEUX O,et al. Model identification for temperature extrapolation in aircraft powerplant systems[J]. International Journal of Thermal Sciences,2013,64(Complete): 162-177.
    [14] 王玉梅,李海. 航空发动机舱温超限故障分析[J]. 工程与试验,2017,57(2): 52-55. doi: 10.3969/j.issn.1674-3407.2017.02.015

    WANG Yumei,LI Hai. Fault analysis of aero engine cabin temperature exceeding limit[J]. Engineering and Testing,2017,57(2): 52-55. (in Chinese) doi: 10.3969/j.issn.1674-3407.2017.02.015
    [15] 马明明. 航空发动机短舱流动与换热的计算研究[D]. 西安: 西北工业大学, 2007.

    MA Mingming. Computational research on the flow and heat transfer of aero-engine nacelles[D]. Xi’an: Northwestern Polytechnical University, 2007. (in Chinese)
    [16] 王杏涛,张靖周,单勇. 发动机舱通风冷却和遮挡隔热综合降温效果[J]. 南京航空航天大学学报,2013,45(5): 652-657. doi: 10.3969/j.issn.1005-2615.2013.05.013

    WANG Xingtao,ZHANG Jingzhou,SHAN Yong,et al. Comprehensive cooling effect of engine compartment ventilation cooling and shielding heat insula tion[J]. Journal of Nanjing University of Aeronautics and Astronautics,2013,45(5): 652-657. (in Chinese) doi: 10.3969/j.issn.1005-2615.2013.05.013
    [17] 马文昌,王维,马松,等. 某型飞机发动机舱通风冷却仿真研究[J]. 飞机设计,2013,33(3): 27-30,42.

    MA Wenchang,WANG Wei,MA Song,et al. Simulation study on ventilation and cooling of a certain aircraft engine compartment[J]. Aircraft Design,2013,33(3): 27-30,42. (in Chinese)
    [18] 谢永奇,余建祖,高红霞,等. 直升机动力舱通风冷却系统仿真[J]. 航空动力学报,2006,13(2): 297-302. doi: 10.3969/j.issn.1000-8055.2006.02.012

    XIE Yongqi,YU Jianzu,GAO Hongxia,et al. Simulation of the ventilation and cooling system of the helicopter power compartment[J]. Journal of Aeronautical Dynamics,2006,13(2): 297-302. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.012
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  237
  • HTML浏览量:  68
  • PDF量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 网络出版日期:  2023-02-18

目录

    /

    返回文章
    返回