留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有多孔泡沫芯的纤维/树脂三明治板声振特性

祖旭东 任旭辉 邹泽煜 李晖

祖旭东, 任旭辉, 邹泽煜, 等. 带有多孔泡沫芯的纤维/树脂三明治板声振特性[J]. 航空动力学报, 2023, 38(9):2214-2220 doi: 10.13224/j.cnki.jasp.20210632
引用本文: 祖旭东, 任旭辉, 邹泽煜, 等. 带有多孔泡沫芯的纤维/树脂三明治板声振特性[J]. 航空动力学报, 2023, 38(9):2214-2220 doi: 10.13224/j.cnki.jasp.20210632
ZU Xudong, REN Xuhui, ZOU Zeyu, et al. Vibration and acoustics characteristics of fiber/resin sandwich sheet with porous foam core[J]. Journal of Aerospace Power, 2023, 38(9):2214-2220 doi: 10.13224/j.cnki.jasp.20210632
Citation: ZU Xudong, REN Xuhui, ZOU Zeyu, et al. Vibration and acoustics characteristics of fiber/resin sandwich sheet with porous foam core[J]. Journal of Aerospace Power, 2023, 38(9):2214-2220 doi: 10.13224/j.cnki.jasp.20210632

带有多孔泡沫芯的纤维/树脂三明治板声振特性

doi: 10.13224/j.cnki.jasp.20210632
基金项目: 国家自然科学基金(11872214,52175079)
详细信息
    作者简介:

    祖旭东(1982-),男,副教授,博士,主要从事战斗部毁伤与防护技术研究

    通讯作者:

    李晖(1982-),男,教授,博士,主要从事复合结构减振降噪研究。E-mail:lh200300206@163.com

  • 中图分类号: V258+.3;TB532

Vibration and acoustics characteristics of fiber/resin sandwich sheet with porous foam core

  • 摘要:

    针对带有多孔泡沫芯的纤维/树脂三明治板,建立了其在平面声波载荷激励下的声振特性分析模型。基于1阶剪切变形理论、四节点等参四边形单元有限元法等,推导了平面声波载荷作用下结构的自由、强迫振动方程,成功求解了固有频率和振动速度响应。为了获取结构的声辐射功率,使用瑞利积分方法确定了振动速度响应和辐射声压之间的定量关系,并通过定义辐射与入射声功率,获得了结构的传声损失系数。利用自行搭建的振动和噪声一体化测试系统开展了实验验证研究,发现理论计算获得的固有频率、共振响应和声压响应的计算误差分别不超过4.9%、10.8%和8.9%,由此证明了所建立的理论模型在预测结构声振响应特性方面的有效性。

     

  • 图 1  带有多孔泡沫芯的纤维/树脂三明治板的理论模型

    Figure 1.  Theoretical model of fiber/resin sandwich sheet with porous foam core

    图 2  PFSS试件振动和噪声一体化测试系统

    Figure 2.  Integrated vibration and noise test system of the PFSS structure

    图 3  PFSS试件声振特性测试时测点位置示意图(单位:mm)

    Figure 3.  Diagrammatic of the test point for the PFSS structure vibration and acoustics characteristics test (unit: mm)

    图 4  PFSS试件在不同测点位置的共振响应

    Figure 4.  Resonance response of the PFSS test piece at different test points

    图 5  PFSS试件在不同测点处的声压级

    Figure 5.  Sound pressure level of the PFSS test piece at different test points

    图 6  理论计算获得的不同声波入射角度下PFSS结构的传声损失

    Figure 6.  Theoretical results of the sound transmission loss of the PFSS structure at different incident angles

    表  1  PFSS试件的材料参数

    Table  1.   Material parameters of PFSS test piece

    参数面板层芯层
    弹性模量/GPa纤维纵向8770
    纤维横向8
    切变模量/GPa面内3.126.9
    面外3.1
    泊松比0.320.3
    密度/(kg/m316182700
    孔隙系数0.9
    下载: 导出CSV

    表  2  PFSS试件固有频率

    Table  2.   Natural frequency of the PFSS test piece

    参数1阶2阶3阶4阶5阶
    频率/Hz实验484.0808.5860.51273.01794.5
    理论485.4848.1892.31326.51844.7
    误差/%0.34.93.74.22.8
    下载: 导出CSV
  • [1] MOURITZ A P,GELLERT E,BURCHILL P,et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures,2001,53(1): 21-42. doi: 10.1016/S0263-8223(00)00175-6
    [2] BANHART J,SEELIGER H W. Aluminium foam sandwich panels: manufacture, metallurgy and applications[J]. Advanced Engineering Materials,2008,10(9): 793-802. doi: 10.1002/adem.200800091
    [3] 李晖, 孙伟, 许卓. 纤维增强复合薄板振动测试与分析方法[M]. 北京: 机械工业出版社, 2020.
    [4] MAGNUCKA-BLANDZI E. Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified Timoshenko hypotheses[J]. Mechanics of Advanced Materials and Structures,2011,18(2): 147-158.
    [5] 辛锋先,卢天健,陈常青. 轻质金属三明治板的隔声性能研究[J]. 声学学报,2008,33(4): 340-347. doi: 10.3321/j.issn:0371-0025.2008.04.009

    XIN Fengxian,LU Tianjian,CHEN Changqing. Sound transmission through lightweight metallic sandwich panel with corrugated core[J]. Acta Acustica,2008,33(4): 340-347. (in Chinese) doi: 10.3321/j.issn:0371-0025.2008.04.009
    [6] LI Hui,XUE Pengcheng,GUAN Zhongwei,et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property[J]. Nonlinear Dynamics,2018,94(3): 2219-2241. doi: 10.1007/s11071-018-4486-5
    [7] LI Hui,WANG Xintong,HU Xiaoyue,et al. Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach[J]. Composites: Part B Engineering,2021,223: 109078.1-109078.14.
    [8] 王亚南,李明俊,胡健东,等. 多孔夹芯多层复合板的总传递矩阵及其吸隔声分析应用[J]. 南昌航空大学学报(自然科学版),2015,29(1): 7-12.

    WANG Yanan,LI Mingjun,HU Jiandong,et al. Analysis on total tranfer matrix for multilayer composite with porous sandwich material and its properties of sound absorption and sound insulation[J]. Journal of Nanchang Hangkong University (Natural Sciences),2015,29(1): 7-12. (in Chinese)
    [9] CRUPI V,MONTANINI R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending[J]. International Journal of Impact Engineering,2007,34(3): 509-521. doi: 10.1016/j.ijimpeng.2005.10.001
    [10] LI Hui,WANG Wenyu,WANG Xintong,et al. A nonlinear analytical model of composite plate structure with an MRE function layer considering internal magnetic and temperature fields[J]. Composites Science and Technology,2020,200: 108445.1-108445.12.
    [11] 何柏灵,赵桂平,卢天健. 复合材料面层-泡沫金属夹芯板的振动及吸能特性分析[J]. 兵工学报,2014,35(2): 228-234. doi: 10.3969/j.issn.1000-1093.2014.02.014

    HE Bailing,ZHAO Guiping,LU Tianjian. Analysis of vibration and energy-absorption characteristics of sandwich plates with metallic foam cores and composite facesheets[J]. Acta Armamentaria,2014,35(2): 228-234. (in Chinese) doi: 10.3969/j.issn.1000-1093.2014.02.014
    [12] XIAO D,MU L,ZHAO G. The influence of correlating material parameters of gradient foam core on free vibration of sandwich panel[J]. Composites: Part B Engineering,2015,77: 153-161. doi: 10.1016/j.compositesb.2015.03.013
    [13] 肖登宝,赵桂平. 金属梯度多孔夹芯板振动特性分析[J]. 航空学报,2017,38(6): 135-142. doi: 10.7527/S1000-6893.2016.220576

    XIAO Dengbao,ZHAO Guiping. Vibration response of sandwich panels with gradient metallic oellular core[J]. Acta Aeronautica et Astronautica Sinica,2017,38(6): 135-142. (in Chinese) doi: 10.7527/S1000-6893.2016.220576
    [14] LI Q,WU D,CHEN X,et al. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation[J]. International Journal of Mechanical Sciences,2018,148: 596-610. doi: 10.1016/j.ijmecsci.2018.09.020
    [15] HESHMATI M,JALALI S K. Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates[J]. European Journal of Mechanics: A/Solids,2019,74: 417-430. doi: 10.1016/j.euromechsol.2018.12.009
    [16] ZENG S,WANG B L,WANG K F. Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect[J]. Composite Structures,2019,207: 340-351. doi: 10.1016/j.compstruct.2018.09.040
    [17] DAIKH A A, ZENKOUR A M. Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory[J]. Materials Research Express, 2019, 6(11): 115707.1-115707. xx(页数).

    DAIKH A A,ZENKOUR A M. Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory[J]. Materials Research Express,2019,6(11): 115707.1-115707.18.
    [18] GAI X L,XING T,LI X H,et al. Sound absorption of microperforated panel with L shape division cavity structure[J]. Applied Acoustics,2017,122: 41-50. doi: 10.1016/j.apacoust.2017.02.004
    [19] GAI X L,XING T,LI X H,et al. Sound absorption properties of microperforated panel with membrane cell and mass blocks composite structure[J]. Applied Acoustics,2018,137: 98-107. doi: 10.1016/j.apacoust.2018.03.013
    [20] 张丰辉,唐宇帆,辛锋先,等. 微穿孔蜂窝-波纹复合声学超材料吸声行为[J]. 物理学报,2018,67(23): 120-130. doi: 10.7498/aps.67.20181368

    ZHANG Fenghui,TANG Yufan,XIN Fengxian,et al. Micro-perforated acoustic metarnaterial with honeycomb-corrugation hybrid core for broadband low frequency sound absorption[J]. Acta Physical Sinca,2018,67(23): 120-130. (in Chinese) doi: 10.7498/aps.67.20181368
    [21] MENG H,GALLAND M A,ICHCHOU M,et al. Small perforations in corrugated sandwich panel significantly enhance low frequency sound absorption and transmission loss[J]. Composite Structures,2017,182: 1-11.
    [22] FU T,CHEN Z,YU H,et al. An analytical study of sound transmission through corrugated core FGM sandwich plates filled with porous material[J]. Composites: Part B Engineering,2018,151: 161-172. doi: 10.1016/j.compositesb.2018.06.010
    [23] XU Z,ZHANG Z,WANG J,et al. Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT[J]. Thin-Walled Structures,2020,157: 107151.1-107151.14.
    [24] KUMAR A,GUNASEKARAN V,PITCHAIMANI J. Acoustic response behavior of porous 3D graphene foam plate[J]. Applied Acoustics,2020,169: 107431.1-107431.17.
    [25] ARUNKUMAR M P,PITCHAIMANI J,GANGADHARAN K V,et al. Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam[J]. Aerospace Science and Technology,2018,78: 1-11. doi: 10.1016/j.ast.2018.03.029
    [26] ZHOU K,LIN Z,HUANG X,et al. Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions[J]. Applied Acoustics,2019,154: 236-250. doi: 10.1016/j.apacoust.2019.05.003
    [27] LI Z,WANG Q,QIN B,et al. Vibration and acoustic radiation of magneto-electro-thermo-elastic functionally graded porous plates in the multi-physics fields[J]. International Journal of Mechanical Sciences,2020,185: 105850.1-105850.15.
    [28] NGUYEN N V,NGUYEN-XUAN H,LEE D,et al. A novel computational approach to functionally graded porous plates with graphene platelets reinforcement[J]. Thin-Walled Structures,2020,150: 106684.1-106684.20.
    [29] LI H,LV H Y,SUN H,et al. Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions[J]. Journal of Sound and Vibration,2021,496(31): 115935.1-115935.18.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  77
  • HTML浏览量:  76
  • PDF量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 网络出版日期:  2023-04-14

目录

    /

    返回文章
    返回