留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4平板冲蚀磨损的数值仿真与试验验证

杨晓军 柳笑寒 刘文博 袁中楠

杨晓军, 柳笑寒, 刘文博, 等. TC4平板冲蚀磨损的数值仿真与试验验证[J]. 航空动力学报, 2023, 38(9):2193-2203 doi: 10.13224/j.cnki.jasp.20210647
引用本文: 杨晓军, 柳笑寒, 刘文博, 等. TC4平板冲蚀磨损的数值仿真与试验验证[J]. 航空动力学报, 2023, 38(9):2193-2203 doi: 10.13224/j.cnki.jasp.20210647
YANG Xiaojun, LIU Xiaohan, LIU Wenbo, et al. Numerical simulation and experimental validation for erosion wear of TC4 plates[J]. Journal of Aerospace Power, 2023, 38(9):2193-2203 doi: 10.13224/j.cnki.jasp.20210647
Citation: YANG Xiaojun, LIU Xiaohan, LIU Wenbo, et al. Numerical simulation and experimental validation for erosion wear of TC4 plates[J]. Journal of Aerospace Power, 2023, 38(9):2193-2203 doi: 10.13224/j.cnki.jasp.20210647

TC4平板冲蚀磨损的数值仿真与试验验证

doi: 10.13224/j.cnki.jasp.20210647
基金项目: 中国民航大学中央高校基本科研业务费项目(3122019187)
详细信息
    作者简介:

    杨晓军(1980-),男,教授、硕士生导师,博士,主要从事航空发动机流动与换热方面研究。E-mail:xiaojunyoung@hotmail.com

    通讯作者:

    柳笑寒(1997-),男,硕士生,主要从事航空发动机冲蚀磨损规律方面研究。E-mail:2019012096@cauc.edu.cn

  • 中图分类号: V252

Numerical simulation and experimental validation for erosion wear of TC4 plates

  • 摘要:

    为了准确地预测不同冲蚀机制下TC4材料的冲蚀率,通过有限元法建立多颗粒随机冲蚀模型,研究在不同颗粒形状、冲击角与冲击速度的Al2O3颗粒冲蚀下TC4平板的冲蚀机理和冲蚀率。通过与相同条件下的冲蚀试验获得的冲蚀率进行对比,验证了数值仿真模型的合理性与真实性。结果表明:30°的低角度冲蚀仿真应使用正方体颗粒,其棱角与材料的相对运动更符合刀具切削的过程;90°的高角度冲蚀仿真应使用球形颗粒,能体现冲蚀过程中对凹坑接触面造成的剪切和挤压作用;相同条件下颗粒冲击速度越大,冲蚀率增长越快,30°的冲蚀率增长较为迅速,90°的冲蚀率增长较为平缓。

     

  • 图 1  TC4平板有限元模型(单位:mm)

    Figure 1.  TC4 plate finite element model (unit: mm)

    图 2  多颗粒冲蚀仿真模型示意图

    Figure 2.  Schematic diagram of multi-particle erosion simulation model

    图 3  正方体颗粒冲击角与方位角示意图

    Figure 3.  Schematic diagram of impingement angle and azimuth angle of cube particles

    图 4  气流喷砂式冲蚀试验平台

    Figure 4.  Air blast erosion experiment platform

    图 5  冲击角为30°、冲击速度为132 m/s球形颗粒冲蚀TC4的von Mises应力分布云图

    Figure 5.  Cloud diagram of von Mises stress distribution of TC4 eroded by spherical particles at impingement angle of 30° and impact velocity of 132 m/s

    图 6  冲击角为30°、冲击速度为132 m/s正方体颗粒冲蚀TC4的von Mises应力分布云图

    Figure 6.  Cloud diagram of von Mises stress distribution of TC4 eroded by cubic particles at impingement angle of 30° and impact velocity of 132 m/s

    图 7  30°角冲击下TC4累计质量损失随累计撞击球形颗粒质量的变化曲线

    Figure 7.  Variation curve of cumulative mass loss of TC4 with cumulative impact spherical particle mass at impingement angle of 30°

    图 8  30°角冲击下TC4累计质量损失随累计撞击正方体颗粒质量的变化曲线

    Figure 8.  Variation curve of cumulative mass loss of TC4 with cumulative impact cubic particle mass at impingement angle of 30°

    图 9  30°角冲击下冲蚀率随速度变化关系仿真与试验结果对比

    Figure 9.  Comparison between simulation and experimental results of the relationship between erosion rate and velocity at impingement angle of 30°

    图 10  冲击角为90°、冲击速度为132 m/s球形颗粒冲蚀TC4的von Mises应力分布云图

    Figure 10.  Cloud diagram of von Mises stress distribution of TC4 eroded by spherical particles at impingement angle of 90° and impact velocity of 132 m/s

    图 11  冲击角为90°、冲击速度为132 m/s正方体颗粒冲蚀TC4的von Mises应力分布云图

    Figure 11.  Cloud diagram of von Mises stress distribution of TC4 eroded by cubic particles at impingement angle of 90° and impact velocity of 132 m/s

    图 12  90°角下TC4累计质量损失随累计撞击球形颗粒质量的变化曲线

    Figure 12.  Variation curve of cumulative mass loss of TC4 with cumulative impact spherical particle mass at impingement angle of 90°

    图 13  90°角下TC4累计质量损失随累计撞击正方体颗粒质量的变化曲线

    Figure 13.  Variation curve of cumulative mass loss of TC4 with cumulative impact spherical particle mass at impingement angle of 90°

    图 14  90°角下冲蚀率随速度变化关系仿真与试验结果对比

    Figure 14.  Comparison between simulation and experimental results of the relationship between erosion rate and velocity at impingement angle of 90°

    图 15  不同冲击角下,冲击速度为132 m/s时球形颗粒冲蚀TC4的von Mises应力分布云图

    Figure 15.  Cloud diagram of von Mises stress distribution of TC4 eroded by impact velocity of 132 m/s spherical particles at different impingement angles

    图 16  不同冲击角下,冲击速度为132 m/s时正方体颗粒冲蚀TC4的von Mises应力分布云图

    Figure 16.  Cloud diagram of von Mises stress distribution of TC4 eroded by impact velocity of 132 m/s cubic particles at different impingement angles

    图 17  冲击速度为132 m/s时冲蚀率随冲击角变化关系仿真与试验结果对比

    Figure 17.  Comparison between simulation and experimental results of the relationship between erosion rate and impingement angles at impact velocity of 132 m/s

    表  1  TC4平板的材料参数

    Table  1.   Material parameter of TC4 plate

    材料参数Ti-6Al-4V
    密度ρ/(kg/m34430
    弹性模量E/GPa110
    泊松比υ0.33
    J-C屈服强度A/MPa1098
    J-C硬化系数B/MPa1092
    应变硬化系数n0.93
    应变率硬化常数C0.014
    热熔化系数m1.1
    熔点Tm/K1903
    比热容cp/(J/(kg·K))670
    J-C失效参数d1−0.09
    J-C失效参数d20.27
    J-C失效参数d30.48
    J-C失效参数d40.014
    J-C失效参数d53.87
    C0/(km/s)5130
    S1.028
    Grüneisen系数γ1.23
    下载: 导出CSV

    表  2  Al2O3颗粒材料参数

    Table  2.   Material parameters of Al2O3 particles

    材料参数数值
    密度ρ/(kg/m34000
    弹性模量E/GPa310
    泊松比υ0.22
    下载: 导出CSV

    表  3  数值仿真模型条件设置

    Table  3.   Condition setting of numerical simulation model

    编号形状冲击角/(°)冲击速度/(m/s)
    19090
    290107
    390122
    490132
    53090
    630107
    730122
    830132
    9正方体9090
    10正方体90107
    11正方体90122
    12正方体90132
    13正方体3090
    14正方体30107
    15正方体30122
    16正方体30132
    下载: 导出CSV

    表  4  试验条件设置

    Table  4.   Test condition setting

    编号粒径/µm冲击角/(°)冲击速度/(m/s)
    11809090
    218090107
    318090122
    418090132
    51803090
    618030107
    718030122
    818030132
    下载: 导出CSV

    表  5  全角度范围仿真与试验条件设置

    Table  5.   Full angle range simulation and test condition setting

    冲击角/(°)试验仿真
    编号形状编号形状
    159球、正方体17
    18正方体
    4510球、正方体19
    20正方体
    6011球、正方体21
    22正方体
    7512球、正方体23
    24正方体
    下载: 导出CSV
  • [1] HAMED A,TABAKOFF W C,WENGLARZ R V. Erosion and deposition in turbomachinery[J]. Journal of Propulsion and Power,2006,22(2): 350-360. doi: 10.2514/1.18462
    [2] FINNIE I,MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear,1978,48(1): 181-190. doi: 10.1016/0043-1648(78)90147-3
    [3] BITTER J G A. A study of erosion phenomena: Part Ⅰ[J]. Wear,1963,6(1): 5-21. doi: 10.1016/0043-1648(63)90003-6
    [4] BITTER J G A. A study of erosion phenomena: Part Ⅱ[J]. Wear,1963,6(1): 169-190. doi: 10.1016/0043-1648(63)90073-5
    [5] ELTOBGY M S,NG E,ELBESTAWI M A. Finite element modeling of erosive wear[J]. International Journal of Machine Tools and Manufacture,2005,45(11): 1337-1346. doi: 10.1016/j.ijmachtools.2005.01.007
    [6] WANG Yufei,YANG Zhenguo. Finite element model of erosive wear on ductile and brittle materials[J]. Wear,2008,265(5/6): 871-878. doi: 10.1016/j.wear.2008.01.014
    [7] AZIMIAN M,SCHMITT P,BART H J. Numerical investigation of single and multi-impacts of angular particles on ductile surfaces[J]. Wear,2015,342/343: 252-261. doi: 10.1016/j.wear.2015.08.022
    [8] 马松林,赵振华,颜诚,等. 不同形状砂尘高速冲蚀TC4平板的数值仿真[J]. 航空动力学报,2019,34(2): 321-330. doi: 10.13224/j.cnki.jasp.2019.02.008

    MA Songlin,ZHAO Zhenhua,YAN Cheng,et al. Numerical simulation of TC4 plates with high speed erosion of sand dust with different shapes[J]. Journal of Aerospace Power,2019,34(2): 321-330. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.02.008
    [9] 杜明超,李增亮,董祥伟,等. 菱形颗粒冲击材料表面冲蚀磨损特性分析[J]. 摩擦学学报,2020,40(1): 1-11. doi: 10.16078/j.tribology.2019066

    DU Mingchao,LI Zengliang,DONG Xiangwei,et al. Analysis of material surface erosion characteristics due to rhomboid-shaped particle impact[J]. Tribology,2020,40(1): 1-11. (in Chinese) doi: 10.16078/j.tribology.2019066
    [10] 王光存. 离心压缩机叶轮冲蚀磨损机理和规律的研究[D]. 济南: 山东大学, 2015.

    WANG Guangcun. Study on erosion wear mechanism and law of impeller in centrifugal compressor[D]. Jinan: Shandong University, 2015. (in Chinese)
    [11] JOHNSON G R,COOK W H. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures[J]. Engineering Fracture Mechanics,1983,21: 541-548.
    [12] GREGORY K. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-cook material model[R]. Washington DC: Department of Transportation Federal Aviation Administration, 2003.
    [13] ZHANG Yancheng,OUTEIRO J C,MABROUKI T. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4 V using three types of numerical models of orthogonal cutting[J]. Procedia CIRP,2015,31: 112-117. doi: 10.1016/j.procir.2015.03.052
    [14] 唐长刚. LS-DYNA有限元分析及仿真[M]. 北京: 电子工业出版社, 2014.
    [15] WOYTOWITZ P J,RICHMAN R H. Modeling of damage from multiple impacts by spherical particles[J]. Wear,1999,233/234/235: 120-133.
    [16] YERRAMAREDDY S,BAHADUR S. Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V[J]. Wear,1991,142(2): 253-263. doi: 10.1016/0043-1648(91)90168-T
    [17] PEPI M,SQUILLACIOTI R,PFLEDDERER L,et al. Solid particle erosion testing of helicopter rotor blade materials[J]. Journal of Failure Analysis and Prevention,2012,12(1): 96-108. doi: 10.1007/s11668-011-9531-3
    [18] EVSTIFEEV A,KAZARINOV N,PETROV Y,et al. Experimental and theoretical analysis of solid particle erosion of a steel compressor blade based on incubation time concept[J]. Engineering Failure Analysis,2018,87: 15-21. doi: 10.1016/j.engfailanal.2018.01.006
    [19] 董刚. 材料冲蚀行为及机理研究[D]. 杭州: 浙江工业大学, 2004.

    DONG Gang. Study on the erosion wear behaviors and mechanisms of several materials[D]. Hangzhou: Zhejiang University of Technology, 2004. (in Chinese)
    [20] American Society of Testing Materials (ASTM). Standard test method for conducting erosion tests by solid particle impingement using gas jets: ASTM G76-13 [S]. West Conshohocken: ASTM, 2013: 1-6.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  90
  • HTML浏览量:  33
  • PDF量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 网络出版日期:  2023-06-01

目录

    /

    返回文章
    返回