留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑滑移边界的多叶波箔式轴承特性分析

徐科繁 张广辉 黄钟文 韩佳真 黄延忠

徐科繁, 张广辉, 黄钟文, 等. 考虑滑移边界的多叶波箔式轴承特性分析[J]. 航空动力学报, 2023, 38(6):1457-1466 doi: 10.13224/j.cnki.jasp.20210649
引用本文: 徐科繁, 张广辉, 黄钟文, 等. 考虑滑移边界的多叶波箔式轴承特性分析[J]. 航空动力学报, 2023, 38(6):1457-1466 doi: 10.13224/j.cnki.jasp.20210649
XU Kefan, ZHANG Guanghui, HUANG Zhongwen, et al. Characteristics analysis of multi-leaf foil bearing with bump-foil support considering slip boundary[J]. Journal of Aerospace Power, 2023, 38(6):1457-1466 doi: 10.13224/j.cnki.jasp.20210649
Citation: XU Kefan, ZHANG Guanghui, HUANG Zhongwen, et al. Characteristics analysis of multi-leaf foil bearing with bump-foil support considering slip boundary[J]. Journal of Aerospace Power, 2023, 38(6):1457-1466 doi: 10.13224/j.cnki.jasp.20210649

考虑滑移边界的多叶波箔式轴承特性分析

doi: 10.13224/j.cnki.jasp.20210649
基金项目: 国家科技重大专项(2017-Ⅳ-0008-0045)
详细信息
    作者简介:

    徐科繁(1996-),男,博士生,主要从事气体箔片轴承研究

    通讯作者:

    张广辉(1982-),男,教授、博士生导师,博士,主要从事转子动力学研究。E-mail:zhanggh@hit.edu.cn

  • 中图分类号: V245.3

Characteristics analysis of multi-leaf foil bearing with bump-foil support considering slip boundary

  • 摘要:

    为探究滑移边界和轴承参数对轴承特性的影响,将考虑滑移边界的雷诺方程应用至具有波箔支撑的多叶式箔片轴承中。依次借助Newton-Raphson法和小扰动法线性化压力控制方程,并利用弯曲梁模型描述箔片径向变形,结合有限差分法建立该类型轴承的流-固耦合求解模型,数值结果与试验结果吻合较好。研究了轴承数、偏心率、长径比、间隙比、平箔片数目以及平箔片厚度对该类型轴承特性参数的影响规律,研究结果表明:对于八叶轴承,当轴承数或间隙比较小时,滑移边界会导致承载力普遍下降3%,此时应考虑其影响,但该影响对长径比和平箔片厚度的变化不敏感。此外,该类型轴承稳定性整体较好,当轴承数较小时滑移边界会导致轴承稳定性下降。

     

  • 图 1  四叶波箔式轴承示意图

    Figure 1.  Four-leaf foil bearing with bump-foil support

    图 2  箔片参数示意图

    Figure 2.  Schematic diagram of foil parameters

    图 3  弯曲梁单元

    Figure 3.  Curved beam element

    图 4  弯曲梁单元刚度矩阵验证结果

    Figure 4.  Verification results of stiffness matrix of curved beam element

    图 5  计算域及边界条件

    Figure 5.  Computational domain and boundary conditions

    图 6  轴承特性仿真流程图

    Figure 6.  Flow chart of simulation for bearing characteristics

    图 7  承载力随偏心距的变化曲线

    Figure 7.  Curve of load capacity with eccentricity

    图 8  网格无关性验证结果

    Figure 8.  Verification results of grid independence

    图 9  不同滑移模型的相对误差

    Figure 9.  Relative error of different slip models

    图 10  轴向中截面上的气膜压力、气膜厚度和Kn分布

    Figure 10.  Film pressure, film thickness and Kn distribution on axial midsection

    图 11  偏心率和轴承数对承载力的影响

    Figure 11.  Influence of eccentricity and bearing number on bearing capacity

    图 12  不同轴承数和偏心率下的气膜压力和Kn分布

    Figure 12.  Film pressure, Kn distribution for different bearing number and eccentricity ratio

    图 13  无量纲长径比和间隙比对承载力的影响

    Figure 13.  Influence of dimensionless length-diameter ratio and clearance ratio on bearing capacity

    图 14  不同长径比和间隙比下的气膜压力和Kn分布

    Figure 14.  Film pressure, Kn distribution for different length-diameter ratio and clearance ratio

    图 15  无量纲平箔片厚度和平箔片数目对承载力的影响

    Figure 15.  Influence of dimensionless thickness of top foil and foil number on bearing capacity

    图 16  不同平箔片数目下的Kn和气膜压力分布

    Figure 16.  Kn, film pressure distribution for different foil numbers

    图 17  平箔片半径对承载力的影响

    Figure 17.  Influence of foil radius on bearing capacity

    图 18  不同外载荷下的平衡半圆

    Figure 18.  Locus of journal center for different loads

    图 19  滑移边界对临界质量的影响

    Figure 19.  Influence of slip boundary on critical mass

    表  1  不同滑移模型对应的系数

    Table  1.   Coefficients of different slip models

    系数滑移模型
    无滑移1阶1.5阶2阶Wu
    c10aaa2a/3
    c2002/91/21/4
    下载: 导出CSV

    表  2  文献[9, 20]中的轴承参数

    Table  2.   Bearing parameters in references [9, 20]

    参数数值
    轴颈半径R/10−2 m5.71500
    轴瓦半径Rb/10−2 m5.79628
    内切圆半径Rt/10−2 m5.74548
    平箔片半径Rf/10−2 m5.95000
    轴承轴向长度L/10−1 m1.52400
    弹性模量Eb/1011 Pa2.06850
    平箔片厚度tf/10−4 m2.54000
    平箔片数量N8
    气体动力黏度μ /10−5 (Pa·s)2.95300
    转速Ω/(r/min)33000
    下载: 导出CSV

    表  3  多叶波箔式轴承的计算参数

    Table  3.   Parameters of multi-leaf foil bearing with bump-foil support

    参数数值
    轴颈半径R/10−2 m(2.34900)
    轴瓦半径Rb/10−2 m2.62500
    内切圆半径Rt/10−2 m2.35000
    平箔片半径Rf/10−2 m(2.75000)
    轴承长度L/10−2 m(4.69800)
    弹性模量Eb/1011 Pa2.14000
    泊松比νb0.3
    平箔片厚度tf/10−4 m(1.01600)
    平箔片数量N(8)
    波箔片跨距s/10−3 m4.20000
    波箔片厚度tb/10−4 m1.01600
    波箔片半长度l/10−3 m1.75000
    气体动力黏度μ /10−5 (Pa·s)1.93200
    转速Ω/(r/min)(50000)
    偏心率 ε(0.5)
    下载: 导出CSV
  • [1] HOU Yu,ZHAO Qi,GUO Yu,et al. Application of gas foil bearings in China[J]. Applied Sciences,2021,11(13): 6210.1-6210.13.
    [2] BRUCKNER R J. An assessment of gas foil bearing scalability and the potential benefits to civilian turbofan engines[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK: ASME, 2010: 29-35.
    [3] 赵晓荣. 多叶波箔型气体动压轴承静特性及气动加热数值研究[D]. 南京: 南京航空航天大学, 2016.

    ZHAO Xiaorong. Numerical research on the static and aerodynamic heating characteristics of multi-leaf compliant foil bearings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [4] 李旺. 动压气体轴承周向变截面间隙内流动特性研究[D]. 南京: 南京航空航天大学, 2019.

    LI Wang. Research on flow characteristics of aerodynamic bearings with variable cross sectional clearance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [5] OH K P,ROHDE S M. A theoretical investigation of the multileaf journal bearing[J]. Journal of Applied Mechanics,1976,43(2): 237-242. doi: 10.1115/1.3423816
    [6] ARAKERE N K,NELSON H D. An analysis of gas-lubricated foil-journal bearings[J]. Tribology Transactions,1992,35(1): 1-10. doi: 10.1080/10402009208982082
    [7] ZHANG Guanghui,XIE Liang,WANG Yu,et al. Performance analysis of oil lubricated foil bearing with flexible supported back spring structure: Part Ⅰ model development and numerical investigation[J]. Journal of Engineering for Gas Turbines and Power,2014,136(11): 112501.1-112301.10.
    [8] ZHANG Guanghui,XIE Liang,WANG Yu,et al. Performance analysis of oil lubricated foil bearing with flexible supported back spring structure: Part Ⅱ comparison of predictions and measured test data[J]. Journal of Engineering for Gas Turbines and Power,2014,136(11): 112502.1-112502.10.
    [9] DU Jianjun,ZHU Jianjun,LI Bing,et al. The effect of area contact on the static performance of multileaf foil bearings[J]. Tribology Transactions,2015,58(4): 592-601. doi: 10.1080/10402004.2014.997907
    [10] LI Changlin,DU Jianjun,ZHU Jianjun,et al. Effects of structural parameters on the load carrying capacity of the multileaf gas foil journal bearing based on contact mechanics[J]. Tribology International,2018,131: 318-331.
    [11] SHAHDHAAR M A,YADAWAD S S,KHAMARI D S,et al. Numerical investigation of slip flow phenomenon on performance characteristics of gas foil journal bearing[J]. SN Applied Sciences,2020,2(10): 1-18.
    [12] 燕震雷,伍林. 稀薄效应对可倾瓦动压气体轴承性能的影响[J]. 航空动力学报,2020,35(7): 1496-1505. doi: 10.13224/j.cnki.jasp.2020.07.018

    YAN Zhenlei,WU Lin. Effect of rarefied effect on the performance of tilting pad dynamic pressure gas bearings[J]. Journal of Aerospace Power,2020,35(7): 1496-1505. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.07.018
    [13] ZHANG Xiangbo,DING Shuiting,DU Farong,et al. Investigation into gas lubrication performance of porous gas bearing considering velocity slip boundary condition[J]. Friction,2022,10(6): 891-910. doi: 10.1007/s40544-021-0503-7
    [14] SZERI A Z. Fluid film lubrication[M]. New York, US: Cambridge University Press, 2010: 466-510.
    [15] 池长青. 流体力学润滑[M]. 北京: 国防工业出版社, 1998: 485-487.
    [16] PILKEY W D. Formulas for stress, strain, and structural matrices[M]. Hoboken, US: John Wiley and Sons, Incorporation, 1994: 878-879.
    [17] 黄钟文. 基于多重网格法的表面微织构气体箔片轴承特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HUANG Zhongwen. Research on micro-textured gas foil bearing characteristics based on multigrid method[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [18] WANG Nenzi,CHANG Chinyuan. An application of Newton’s method to the lubrication analysis of air-lubricated bearings[J]. Tribology Transactions,1999,42(2): 419-424. doi: 10.1080/10402009908982237
    [19] HU Hongyang,FENG Ming,REN Tianming. Study on the performance of gas foil journal bearings with bump-type shim foil[J]. Journal of Engineering Tribology,2021,235(3): 509-523.
    [20] KOEPSEL W F. Gas lubricated foil bearing development for advanced turbomachines[R]. AFAPL-TR-76-114, 1977.
    [21] HIRANI H,SUH N P. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches[J]. Tribology International,2005,38(5): 481-491. doi: 10.1016/j.triboint.2004.10.008
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  195
  • HTML浏览量:  43
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-13
  • 网络出版日期:  2023-02-22

目录

    /

    返回文章
    返回