留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于代理模型的双路燃气组合热试验参数优化

阿嵘 齐玢 陈鑫 王日 董素君 周印佳

阿嵘, 齐玢, 陈鑫, 等. 基于代理模型的双路燃气组合热试验参数优化[J]. 航空动力学报, 2023, 38(9):2097-2106 doi: 10.13224/j.cnki.jasp.20210658
引用本文: 阿嵘, 齐玢, 陈鑫, 等. 基于代理模型的双路燃气组合热试验参数优化[J]. 航空动力学报, 2023, 38(9):2097-2106 doi: 10.13224/j.cnki.jasp.20210658
A Rong, QI Bin, CHEN Xin, et al. Parameter optimization of dual gas flow combined thermal test based on surrogate model[J]. Journal of Aerospace Power, 2023, 38(9):2097-2106 doi: 10.13224/j.cnki.jasp.20210658
Citation: A Rong, QI Bin, CHEN Xin, et al. Parameter optimization of dual gas flow combined thermal test based on surrogate model[J]. Journal of Aerospace Power, 2023, 38(9):2097-2106 doi: 10.13224/j.cnki.jasp.20210658

基于代理模型的双路燃气组合热试验参数优化

doi: 10.13224/j.cnki.jasp.20210658
基金项目: 国家自然科学基金(11902026,12102056)
详细信息
    作者简介:

    阿嵘(1991-),女,工程师,博士,主要从事飞行器热管理及热试验技术研究

    通讯作者:

    齐玢(1986-),男,高级工程师,博士,主要从事飞行器热管理及热试验技术研究。E-mail:qionline@163.com

  • 中图分类号: V216.5

Parameter optimization of dual gas flow combined thermal test based on surrogate model

  • 摘要:

    为确保双路燃气组合热试验过程中试件表面热流与高超声速气动热流的吻合性,对试验参数进行了优化设计。针对典型尖楔结构建立了双路燃气组合加热的数值计算模型,通过拉丁超立方采样及基于模糊聚类的加点策略获取了128个样本点,开展了数值模拟,并采用Kriging代理模型以及带精英策略的非支配排序遗传优化算法,以燃气加热热流与气动热流的吻合度为优化目标,完成了多目标优化。结果表明,通过增加样本点,显著减小了代理模型误差;8个测试样本点下试件表面热流密度平均相对误差最大约为7%,大部分区域平均误差不超过5%,方均根误差的均值为1.72%,最大值误差的最大值为13.6%,表明Kriging代理模型具有较高的预测精度;通过优化,试件表面燃气加热热流分布与气动加热热流分布吻合较好,驻点处热流密度相对误差小于1%,平板区域相对误差不超过10%,表明了基于Kriging代理模型的双路燃气组合热试验参数优化方法的有效性。

     

  • 图 1  双路气流组合热试验方案示意图

    Figure 1.  Schematic of dual gas flow combined heating method

    图 2  计算网格模型

    Figure 2.  Mesh structure of computational model

    图 3  不同尺寸网格计算的试件表面热流密度分布

    Figure 3.  Heat flux distribution on specimen wall with different mesh sizes

    图 4  某工况对称面温度分布云图

    Figure 4.  Contour of temperature distribution on symmetry plane at some condition

    图 5  某工况试件表面热流密度分布云图

    Figure 5.  Contour of heat flux distribution on specimen wall at some condition

    图 6  基于代理模型的参数优化流程

    Figure 6.  Flow chart of parameter optimization based on surrogate model

    图 7  NSGA-Ⅱ算法流程图

    Figure 7.  Flow chart of NSGA-Ⅱ algorithm

    图 8  样本点设计变量取值分布

    Figure 8.  Design variable distribution of samples

    图 9  平均驻点相对误差随样本点数量变化曲线

    Figure 9.  Average relative error at stagnation for different sample quantity

    图 10  测试工况下试件表面热流预测值

    Figure 10.  Prediction value of surface heat flux at test condition

    图 11  测试样本点下试件表面热流密度平均相对误差分布云图

    Figure 11.  Contour of average relative error of surface heat flux of test samples

    图 12  可行解的目标值空间

    Figure 12.  Objective space of feasible solution

    图 13  最优状态下试件表面热流预测值

    Figure 13.  Prediction value of surface heat flux at optimum condition

    图 14  最优状态下试件表面热流密度相对误差分布云图

    Figure 14.  Contour of average relative error of surface heat flux at optimum condition

    图 15  最优状态下试件表面热流密度与目标值对比

    Figure 15.  Comparison between surface heat flux and target value at optimum condition

    表  1  设计变量取值范围

    Table  1.   Value range of design variables

    设计变量取值范围
    下限上限
    Ma10.10.5
    Ma20.10.5
    d/mm18
    l/mm520
    下载: 导出CSV

    表  2  NSGA-Ⅱ算法参数设定值

    Table  2.   Parameter settings of NSGA-Ⅱ algorithm

    参数设定值
    种群个数10
    种群代数100
    交叉概率0.9
    实数向量变异概率1.0
    二进制字符串变异概率1.0
    实数交叉分配指数20
    实数变异分配指数20
    下载: 导出CSV

    表  3  测试样本取值

    Table  3.   Value of test samples

    序号Ma1Ma2d/mml/mm
    10.390.286.167.37
    20.280.227.8814.26
    30.340.401.739.01
    40.200.416.5810.75
    50.100.324.005.03
    60.230.162.7018.39
    70.440.484.5614.78
    80.480.132.9917.16
    下载: 导出CSV

    表  4  测试样本点下表面热流密度误差

    Table  4.   Errors of surface heat flux of test samples

    序号$ {e_{{\text{NRMSE}}}} $/%$ {L_\infty } $/%
    11.4711.98
    22.4013.60
    32.9412.94
    40.895.43
    52.1811.81
    61.5512.53
    70.916.89
    81.407.39
    平均值1.72
    最大值13.60
    下载: 导出CSV

    表  5  Pareto最优解及其相对坐标原点的距离

    Table  5.   Pareto optimal solution and distance from coordinate origin

    编号Ma1Ma2d/mml/mmδ0/%δ1/%Δ
    No.9660.4100.1101.7310.0413.417.00.22
    No.7580.4130.1132.148.876.521.90.23
    No.7380.4120.1132.1810.088.921.30.23
    No.9200.4100.1102.1510.049.820.90.23
    No.8790.4100.1132.1810.049.721.20.23
    No.8080.4150.1052.138.054.323.40.24
    No.9460.4100.1102.168.086.023.00.24
    No.5080.4030.1051.018.6919.914.20.25
    No.5040.4010.1091.288.8919.016.00.25
    No.8820.4050.1081.0110.3222.012.00.25
    No.8320.4050.1021.0110.7022.611.90.26
    No.9820.4160.1022.358.383.025.40.26
    No.4520.4030.1281.0211.4725.711.30.28
    No.9160.4240.1042.357.961.331.30.31
    No.9410.4250.1022.357.961.332.90.33
    No.2670.3950.1281.0212.9232.210.10.34
    No.1920.3930.1421.0212.9033.89.40.35
    下载: 导出CSV
  • [1] JOYCE P, POMROY J, GRINDLE L. The hyper-X launch vehicle: challenges and design considerations for hypersonic flight testing[R]. AIAA-2005-3333, 2005.
    [2] RONDEAU C M, JORRIS T R. X-51A scramjet demonstrator program: waverider ground and flight test[R]. Armed Services Technical Information Agency Documents, ADA593742, 2013.
    [3] GRANT P, SUSAN P. A heating analysis of the nosecap and leading edges of the X-34 vehicle[R]. AIAA 98-0878, 1998.
    [4] PRABHU D, LOOMIS M, VENKATAPATHY E, et al. X-33 aerothermal environment simulations and aerothermodynamic design[R]. AIAA-1998-0868, 1998.
    [5] 姚峰,董素君,王浚. 高温燃气热环境模拟方案仿真研究[J]. 航空动力学报,2010,25(4): 768-773.

    YAO Feng,DONG Sujun,WANG Jun. Numerical analysis of subsonic high-temperature-gas thermal environment simulation[J]. Journal of Aerospace Power,2010,25(4): 768-773. (in Chinese)
    [6] 董素君,齐玢,李志杰,等. 低速高温燃气流热模拟试验方法和设备[J]. 航空动力学报,2012,27(5): 961-968.

    DONG Sujun,QI Bin,LI Zhijie,et al. Approach and facility for aerodynamic thermal test by lower speed and high-temperature gas flow[J]. Journal of Aerospace Power,2012,27(5): 961-968. (in Chinese)
    [7] 董素君,李志杰,王浚. 尖楔结构低速高/中温双路气流组合热试验方法[J]. 航空动力学报,2013,28(2): 290-296.

    DONG Sujun,LI Zhijie,WANG Jun. Combined heating method of low speed and high/middle temperature gas flow for thermal test of tip wedge structure[J]. Journal of Aerospace Power,2013,28(2): 290-296. (in Chinese)
    [8] 陈鑫,刘莉,岳振江. 基于代理模型的高超声速气动热模型降阶研究[J]. 北京理工大学学报,2016,36(4): 340-347.

    CHEN Xin,LIU Li,YUE Zhenjiang. A reduced order modeling for aerothermodynamic of hypersonic vehicles based on surrogate method[J]. Transactions of Beijing Institute of Technology,2016,36(4): 340-347. (in Chinese)
    [9] 杨丽,佟操,陈闯,等. 基于Kriging模型和遗传算法的齿轮修形减振优化[J]. 航空动力学报,2017,32(6): 1412-1418.

    YANG Li,TONG Cao,CHEN Chuang,et al. Vibration reduction optimization of gear modification based on Kriging model and genetic algorithm[J]. Journal of Aerospace Power,2017,32(6): 1412-1418. (in Chinese)
    [10] 夏露,王丹,张阳,等. 基于自适应代理模型的气动优化方法[J]. 空气动力学学报,2016,34(4): 433-440.

    XIA Lu,WANG Dan,ZHANG Yang,et al. Aerodynamic optimization method based on adaptive surrogate model[J]. Acta Aerodynamica Sinica,2016,34(4): 433-440. (in Chinese)
    [11] 魏仁敏,杜刚,金捷. 基于Kriging代理模型的单边膨胀喷管尾缘切角优化[J]. 航空动力学报,2018,33(4): 874-881.

    WEI Renmin,DU Gang,JIN Jie. Optimization of trailing edge angles of single expansion ramp nozzle based on Kriging method[J]. Journal of Aerospace Power,2018,33(4): 874-881. (in Chinese)
    [12] 衣春轮,刘燕斌,曹瑞,等. 基于代理模型的高超声速飞行器外形参数优化[J]. 航空动力学报,2019,34(11): 2354-2365.

    YI Chunlun,LIU Yanbin,CAO Rui,et al. Shape parameters optimization of hypersonic vehicle based on surrogate model[J]. Journal of Aerospace Power,2019,34(11): 2354-2365. (in Chinese)
    [13] DEB K,PRATAP A,AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197. doi: 10.1109/4235.996017
    [14] JOHN J B,RUSSEL M C. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics,2006(38): 129-157.
    [15] 齐玢,董素君,石泳,等. 典型尖楔结构燃气流热试验工况确定方法[J]. 航空动力学报,2018,33(4): 911-918.

    QI Bin,DONG Sujun,SHI Yong,et al. Determination method for thermal test condition of the tip wedge structure heated by high temperature gas flow[J]. Journal of Aerospace Power,2018,33(4): 911-918. (in Chinese)
    [16] XIONG Kai, LI Yunhua, DONG Sujun. Temperature distribution of a test specimen with high-speed heat air-flow passing through[J]. Thermal Science, 2018, 22(6A): 2527-2538.
    [17] 吴睿,聂万胜,蔡红华,等. UDMH/NTO火箭发动机尾焰流场特性数值仿真[J]. 航空动力学报,2018,33(4): 952-960.

    WU Rui,NIE Wansheng,CAI Honghua,et al. Numerical simulation of flow field characteristics of UDMH/NTO rocket engine plume[J]. Journal of Aerospace Power,2018,33(4): 952-960. (in Chinese)
    [18] CHEN Xin,LIU Li,LONG Teng,et al. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD[J]. Chinese Journal of Aeronautics,2015,28(5): 1328-1342. doi: 10.1016/j.cja.2015.06.024
    [19] CHEN Xin,CAO Zhanwei,FU Bin,et al. Adding-point strategy for surrogate-based reduced-order hypersonic aerothermodynamic modeling based on fuzzy clustering[J]. Journal of Spacecraft and Rockets,2021,58(1): 244-253. doi: 10.2514/1.A34813
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  103
  • HTML浏览量:  28
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 网络出版日期:  2023-07-07

目录

    /

    返回文章
    返回