留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机钛合金声衬热振响应特性

王晨 李颖 霍施宇 由于 尚一博 李斌

王晨, 李颖, 霍施宇, 等. 航空发动机钛合金声衬热振响应特性[J]. 航空动力学报, 2024, 39(1):20210671 doi: 10.13224/j.cnki.jasp.20210671
引用本文: 王晨, 李颖, 霍施宇, 等. 航空发动机钛合金声衬热振响应特性[J]. 航空动力学报, 2024, 39(1):20210671 doi: 10.13224/j.cnki.jasp.20210671
WANG Chen, LI Ying, HUO Shiyu, et al. Thermal-vibration response performance of titanium alloy acoustic liner for aero-engine[J]. Journal of Aerospace Power, 2024, 39(1):20210671 doi: 10.13224/j.cnki.jasp.20210671
Citation: WANG Chen, LI Ying, HUO Shiyu, et al. Thermal-vibration response performance of titanium alloy acoustic liner for aero-engine[J]. Journal of Aerospace Power, 2024, 39(1):20210671 doi: 10.13224/j.cnki.jasp.20210671

航空发动机钛合金声衬热振响应特性

doi: 10.13224/j.cnki.jasp.20210671
基金项目: 陕西省自然科学基础研究计划(2023-JC-QN-0094,2023-JC-QN-0044); 航空发动机及燃气轮机重大专项(J2019-IV-0014-0082)
详细信息
    作者简介:

    王晨(1993-),男,讲师,硕士,主要从事发动机结构强度分析与试验研究

  • 中图分类号: V216

Thermal-vibration response performance of titanium alloy acoustic liner for aero-engine

  • 摘要:

    针对高温振动环境下钛合金声衬动响应变化规律及疲劳失效问题,以仿真分析和试验相结合的方法开展钛合金声衬高温环境下的振动特性研究。研究结果表明:200 ℃下钛合金声衬1阶固有频率计算结果和试验值吻合较好,误差在8%以内。在40g振动激励下,通过对比仿真结果与试验结果发现速度响应的误差在26%以内,验证了仿真分析方法的可用性与准确性。使用该数值方法计算了热振环境下声衬的应力分布,发现声衬应力最大位置出现在蜂窝芯上,面板的应力水平整体相对较低;随着蜂窝芯高度和厚度的增大,声衬的应力水平会下降,而声衬的应力水平会随着面板厚度得增大而升高;孔径的大小对声衬强度影响可以忽略。

     

  • 图 1  钛合金声衬几何参数

    Figure 1.  Geometric parameters of titanium alloy acoustic liner

    图 2  钛合金声衬几何模型

    Figure 2.  Geometric model of titanium alloy acoustic liner

    图 3  试验夹具几何模型

    Figure 3.  Geometric model of test fixture

    图 4  声衬热振系统有限元模型

    Figure 4.  Finite element model of thermal-vibration system of acoustic liner

    图 5  声衬热振响应分析流程

    Figure 5.  Thermal-vibration analysis process of acoustic liner

    图 6  夹具温度分布

    Figure 6.  Fixture temperature distribution

    图 7  热振试验系统连接框图

    Figure 7.  Connection diagram of thermal-vibration test system

    图 8  试验件安装图

    Figure 8.  Installation drawing of test pieces

    图 9  试验件安装照片

    Figure 9.  Installation photo of test pieces

    图 10  钛合金声衬热振试验

    Figure 10.  Thermal-vibration test of titanium alloy acoustic liner

    图 11  声衬1阶弯曲振型

    Figure 11.  First order bending mode of acoustic liner

    图 12  钛合金声衬速度响应

    Figure 12.  Velocity response of titanium alloy acoustic liner

    图 13  声衬热振应力响应

    Figure 13.  Thermal-vibration stress response of acoustic liner

    图 14  声衬应力最大位置

    Figure 14.  Maximum stress position of acoustic liner

    图 15  蜂窝芯高度对热振响应影响

    Figure 15.  Effect of honeycomb core height on thermal-vibration response

    图 16  蜂窝芯壁厚对热振响应影响

    Figure 16.  Effect of honeycomb core thickness on thermal-vibration response

    图 17  孔径大小对热振响应影响

    Figure 17.  Effect of aperture on thermal-vibration response

    图 18  面板厚度对热振响应影响

    Figure 18.  Effect of panel thickness on thermal-vibration response

    表  1  TC4钛合金材料热物性参数

    Table  1.   Thermophysical parameters of TC4 titanium alloy

    温度/℃弹性模量/
    GPa
    线胀系数/
    10−6(1/℃)
    热导率/
    (W/ (m·℃))
    比热/
    (kg·℃)
    201099.16.8611
    100989.17.4624
    20096.59.28.7653
    下载: 导出CSV

    表  2  30CrMnSi热物性参数

    Table  2.   Thermophysical parameters of 30CrMnSi

    温度/℃弹性模量/
    GPa
    线胀系数/
    10−6(1/℃)
    热导率/
    (W/(m·℃))
    比热/
    (kg·℃)
    2020111.027.5470
    10020011.029.2520
    200196.511.730.1580
    下载: 导出CSV

    表  3  试验件测量结果

    Table  3.   Measurement results of test pieces

    编号面板厚度/mm声衬高度/mm焊合率/%
    1#0.6916.3095
    2#0.7016.4395
    3#0.7116.2990
    4#0.7216.2190
    下载: 导出CSV

    表  4  钛合金声衬1阶固有频率

    Table  4.   First order natural frequency of titanium alloy acoustic liner

    试验件
    编号
    1阶固有频率/Hz相对误差/%
    试验值仿真分析值
    1#23582176.37.7
    2#22724.2
    3#182519.2
    4#192712.6
    下载: 导出CSV

    表  5  钛合金声衬热振响应

    Table  5.   Thermal-vibration response of titanium alloy acoustic liner

    试验件
    编号
    热振响应/(m/s)相对误差/%
    试验值仿真分析值
    1#2.553.3022.7
    2#2.4027.3
    3#2.3229.6
    4#2.4625.5
    下载: 导出CSV
  • [1] 陈云永,杨小贺,卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报,2017,38(9): 520953. doi: 10.7527/S1000-6893.2017.620953

    CHEN Yunyong,YANG Xiaohe,WEI Feifei. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica,2017,38(9): 520953. (in Chinese) doi: 10.7527/S1000-6893.2017.620953
    [2] 纪双英,郝巍,刘杰. 共振吸声结构在航空发动机上的应用进展[J]. 航空工程进展,2019,10(3): 302-308.

    JI Shuangying,HAO Wei,LIU Jie. Application progress of resonance sound absorption structure in aero engines[J]. Advances in Aeronautical Science and Engineering,2019,10(3): 302-308. (in Chinese)
    [3] 刘时秀,张卫红,呙道军,等. 飞行器宽带声振响应预示技术研究[J]. 导弹与航天运载技术,2011(5): 50-53.

    LIU Shixiu,ZHANG Weihong,GUO Daojun,et al. Study on wide-band vibro-acoustic response prediction for the aerocraft[J]. Missiles and Space Vehicles,2011(5): 50-53. (in Chinese)
    [4] 沙云东,王建,赵奉同,等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报,2017,32(11): 2659-2671. doi: 10.13224/j.cnki.jasp.2017.11.013

    SHA Yundong,WANG Jian,ZHAO Fengtong,et al. Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J]. Journal of Aerospace Power,2017,32(11): 2659-2671. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.11.013
    [5] 杨嘉丰. 航空发动机耐温钛合金降噪声衬声学特性研究[D]. 北京: 北京航空航天大学, 2019.

    YANG Jafeng. An investigation on acoustic performance of titanium alloy heatproof acoustic liner for aero-engines[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [6] 岳喜山, 欧阳小龙, 侯金保. 钛合金蜂窝壁板结构制造技术研究[C]//第十六届全国钎焊及特种连接技术交流会论文集. 北京: 中国机械工程学会, 2019: 239-234.
    [7] 谢宗蕻,岳喜山,孙俊锋. 钛合金蜂窝壁板隔热性能试验研究[J]. 南京航空航天大学学报,2016,48(1): 16-20. doi: 10.16356/j.1005-2615.2016.01.003

    XIE Zonghong,YUE Xishan,SUN Junfeng. Experimental study on thermal insulation performance of titanium honeycomb sandwich panels[J]. Journal of Nanjing University of Aeronautics & Astronautics,2016,48(1): 16-20. (in Chinese) doi: 10.16356/j.1005-2615.2016.01.003
    [8] ZHANG Xiaolei,YU Kaiping,BAI Yunhe,et al. Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core[J]. Composite Structures,2015,131: 99-106. doi: 10.1016/j.compstruct.2015.04.049
    [9] KEHOE M W, DEATON V C. Correlation of analytical and experimental hot structure vibration results[R]. NASA Technical Memorandum 104269, 1993.
    [10] ZHANG Wenbo,CHEN Hualing,ZHU Danhui,et al. The thermal effects on high-frequency vibration of beams using energy flow analysis[J]. Journal of Sound and Vibration,2014,333(9): 2588-2600. doi: 10.1016/j.jsv.2013.12.020
    [11] 沙云东,艾思泽,张家铭,等. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报,2020,35(7): 1402-1412. doi: 10.13224/j.cnki.jasp.2020.07.008

    SHA Yundong,AI Size,ZHANG Jiaming,et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power,2020,35(7): 1402-1412. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.07.008
    [12] 东巳宙. 高温环境下复合材料层合板与蜂窝板力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    DONG Sizhou. The analysis of mechanical properties on composite laminated plate and honeycomb panel under the environment of high temperature[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [13] 吴大方,赵寿根,潘兵,等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报,2013,45(4): 598-605. doi: 10.6052/0459-1879-12-360

    WU Dafang,ZHAO Shougen,PAN Bing,et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(4): 598-605. (in Chinese) doi: 10.6052/0459-1879-12-360
    [14] 吴大方,赵寿根,晏震乾,等. 巡航导弹防热部件热-振联合试验[J]. 航空动力学报,2009,24(7): 1507-1511. doi: 10.13224/j.cnki.jasp.2009.07.034

    WU Dafang,ZHAO Shougen,YAN Zhenqian,et al. Experimental study on thermal-vibration test of thermal insulating component for cruise missile[J]. Journal of Aerospace Power,2009,24(7): 1507-1511. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.07.034
    [15] 吴大方,林鹭劲,吴文军,等. 1500 ℃极端高温环境下高超声速飞行器轻质隔热材料热/振联合试验[J]. 航空学报,2020,41(7): 223612.

    WU Dafang,LIN Lujin,WU Wenjun,et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500 ℃[J]. Acta Aeronautica et Astronautica Sinica,2020,41(7): 223612. (in Chinese)
    [16] 王晨,陈海波,王用岩,等. 温度效应对铝合金壁板高频声振疲劳寿命的影响研究[J]. 应用力学学报,2018,35(4): 701-708, 926.

    WANG Chen,CHEN Haibo,WANG Yongyan,et al. Thermal effect on the fatigue life of aluminum panel under high-frequency acoustic excitation[J]. Chinese Journal of Applied Mechanics,2018,35(4): 701-708, 926. (in Chinese)
    [17] 王晨,燕群,陈海波,等. 温度效应对壁板动响应及疲劳寿命影响研究[J]. 计算机仿真,2019,36(6): 68-72. doi: 10.3969/j.issn.1006-9348.2019.06.014

    WANG Chen,YAN Qun,CHEN Haibo,et al. Influence of temperature effect on dynamic response and fatigue life of panel[J]. Computer Simulation,2019,36(6): 68-72. (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.06.014
    [18] 李其汉. 航空发动机强度振动测试技术[M]. 北京: 北京航空航天大学出版社, 1995.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  55
  • HTML浏览量:  30
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-25
  • 网络出版日期:  2023-07-04

目录

    /

    返回文章
    返回