留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式电推进飞机双永磁电动机系统控制策略

翁卢晖 姚太克 张玄 张荣格 卜飞飞

翁卢晖, 姚太克, 张玄, 等. 分布式电推进飞机双永磁电动机系统控制策略[J]. 航空动力学报, 2023, 38(5):1259-1269 doi: 10.13224/j.cnki.jasp.20210680
引用本文: 翁卢晖, 姚太克, 张玄, 等. 分布式电推进飞机双永磁电动机系统控制策略[J]. 航空动力学报, 2023, 38(5):1259-1269 doi: 10.13224/j.cnki.jasp.20210680
WENG Luhui, YAO Taike, ZHANG Xuan, et al. Control strategy of dual permanent magnet motor system for distributed electric propulsion aircraft[J]. Journal of Aerospace Power, 2023, 38(5):1259-1269 doi: 10.13224/j.cnki.jasp.20210680
Citation: WENG Luhui, YAO Taike, ZHANG Xuan, et al. Control strategy of dual permanent magnet motor system for distributed electric propulsion aircraft[J]. Journal of Aerospace Power, 2023, 38(5):1259-1269 doi: 10.13224/j.cnki.jasp.20210680

分布式电推进飞机双永磁电动机系统控制策略

doi: 10.13224/j.cnki.jasp.20210680
基金项目: 国家自然科学基金(52177050)
详细信息
    作者简介:

    翁卢晖(1997-),男,硕士生,主要从事伺服系统多电动机协同控制研究

    通讯作者:

    卜飞飞(1984-),男,副教授,博士,主要从事航空电源、伺服驱动、发电机、电动机及其控制等研究。E-mail:bufeifei1984@163.com

  • 中图分类号: V242.5

Control strategy of dual permanent magnet motor system for distributed electric propulsion aircraft

  • 摘要:

    为了减小气流等其他因素对分布式电推进飞机中各推进电动机带来的负载扰动导致的转速突变,使得总推力突变或机身左右两侧推力不一致而导致飞机偏航,需要保证各推进电动机具有良好的抗干扰能力和转速同步性。针对此问题,提出了一种针对双永磁电机系统的改进交叉耦合控制策略,采用了改进趋近律的滑模同步控制器。同时设计了一种负载观测器,该观测器以可直接通过位置传感器测得的电机转子位置信号为已知量,避免了微分突变的引入。对所提出的双永磁电机系统控制策略进行了一系列仿真及实验验证,仿真与实验结果发现:在转矩突变时,该控制策略与传统交叉耦合控制策略相比,转速突变减小约50%,同步误差减小约18%,证明了该控制策略与传统交叉耦合控制策略相比具有更高的同步性能和更强的抗干扰能力。

     

  • 图 1  永磁电动机矢量控制框图

    Figure 1.  Vector control block diagram of permanent magnet motor

    图 2  负载观测器结构图

    Figure 2.  Structure diagram of load observer

    图 3  带负载观测器的永磁电动机矢量控制框图

    Figure 3.  Vector control block diagram of permanent magnet motor with load observer

    图 4  推进电动机沿飞机展向布置示意图

    Figure 4.  Schematic diagram of the arrangement of propulsion motors along the aircraft’s span

    图 5  传统交叉耦合控制结构框图

    Figure 5.  Block diagram of traditional cross coupling control structure

    图 6  改进交叉耦合控制结构框图

    Figure 6.  Block diagram of improved cross coupling control structure

    图 7  负载观测器仿真波形

    Figure 7.  Simulation waveforms of load observer

    图 8  传统交叉耦合控制仿真波形

    Figure 8.  Simulation waveforms of traditional cross coupling control

    图 9  改进交叉耦合控制仿真波形

    Figure 9.  Simulation waveforms of improved cross coupling control

    图 10  实验平台

    Figure 10.  Experimental platform

    图 11  对拖平台结构图

    Figure 11.  Structural diagram of towing platform

    图 12  负载模拟发电机控制框图

    Figure 12.  Control block diagram of the load simulation motor

    图 13  螺旋桨负载转矩与转速关系曲线

    Figure 13.  Relation curve between load torque and speed of propeller

    图 14  对拖平台的螺旋桨负载模拟实验波形

    Figure 14.  Experimental waveforms of propeller load simulation on towing platform

    图 15  负载观测器实验波形

    Figure 15.  Experimental waveforms of load observer

    图 16  传统交叉耦合控制实验波形

    Figure 16.  Experimental waveforms of traditional cross coupling control

    图 17  改进交叉耦合控制实验波形

    Figure 17.  Experimental waveforms of improved cross coupling control

    表  1  永磁电动机参数

    Table  1.   Parameters of permanent magnet motors

    Un/Vn/(r/min)ѱf/Wbp/对RsLs/mH
    2430000.0142820.340.92
    下载: 导出CSV
  • [1] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报,2021,42(3): 13-29.

    HUANG Jun. Overview of distributed electric propulsion aircraft design technology[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 13-29. (in Chinese)
    [2] 高明,余伟臣,王杉杉,等. 太阳能无人机能源系统的多维耦合建模[J]. 航空学报,2021,42(7): 398-413.

    GAO Ming,YU Weichen,WANG Shanshan,et al. Multidimensional coupling modeling of solar UAV energy system[J]. Acta Aeronautica et Astronautica Sinica,2021,42(7): 398-413. (in Chinese)
    [3] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006.
    [4] 周广飞,侯博川,杨建华,等. 基于动态补偿的多电机控制算法[J]. 航空学报,2020,41(增刊1): 157-162.

    ZHOU Guangfei. HOU Bochuan, YANG Jianhua, et al. Multi motor control algorithm based on dynamic compensation[J]. Acta Aeronautica et Astronautica Sinica,2020,41(Suppl.1): 157-162. (in Chinese)
    [5] 朱炳杰,杨希祥,宗建安,等. 分布式混合电推进飞行器技术综述[J]. 航空学报,2022,43(7): 025556.1-025556.17.

    ZHU BingJie,YANG Xixiang,ZONG Jian’an,et al. Overview of distributed hybrid electric propulsion vehicle technology[J]. Acta Aeronautica et Astronautica Sinica,2022,43(7): 025556.1-025556.17. (in Chinese)
    [6] 程雪梅. 分布式推力矢量控制在超长航时无人机中的应用[J]. 飞行力学,2011,29(6): 72-75. doi: 10.13645/j.cnki.f.d.2011.06.015

    CHENG Xuemei. Application of distributed thrust vector control in ultra long endurance UAV[J]. Flight Dynamics,2011,29(6): 72-75. (in Chinese) doi: 10.13645/j.cnki.f.d.2011.06.015
    [7] 金童. 基于自适应周期扰动观测器的永磁同步电机控制系统研究[D]. 广州: 华南理工大学, 2020.

    JIN Tong. Research on permanent magnet synchronous motor control system based on adaptive periodic disturbance observer[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
    [8] 张博翰. 基于负载转矩补偿的电动汽车永磁轮毂电机矢量控制研究[D]. 江苏 镇江: 江苏大学, 2020.

    ZHANG Bohan. Research on vector control of permanent magnet hub motor of electric vehicle based on load torque compensation[D]. Zhenjiang Jiangsu: Jiangsu University, 2020. (in Chinese)
    [9] 武康. 基于扩张状态观测器的几类不确定非线性系统抗干扰控制研究[D]. 南京: 东南大学, 2019.

    WU Kang. Research on anti disturbance control of several classes of uncertain nonlinear systems based on extended state observer[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [10] LUENBERGER D G. Observing the state of a linear system[J]. IEEE Transactions on Aerospace and Electronic Systems,1964(2): 74-80.
    [11] KOREN Y. Cross-coupled biaxial computer control for manufacturing systems[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1980,102(4): 265-272. doi: 10.1115/1.3149612
    [12] 郭松. 双永磁同步电机同步协调控制系统研究[D]. 江苏 镇江: 江苏科技大学, 2017.

    GUO Song. Research on synchronous coordinated control system of dual permanent magnet synchronous motor[D]. Zhenjiang Jiangsu: Jiangsu University of Science and Technology, 2017. (in Chinese)
    [13] 刘大伟,高钦和,陈志翔,等. 双电机同步交叉耦合PID控制器的设计与试验验证[J]. 电机与控制应用,2019,46(9): 31-35. doi: 10.3969/j.issn.1673-6540.2019.09.005

    LIU Dawei,GAO Qinhe,CHEN Zhixiang,et al. Design and experimental verification of double motor synchronous cross coupling PID controller[J]. Electric Machines and Control Application,2019,46(9): 31-35. (in Chinese) doi: 10.3969/j.issn.1673-6540.2019.09.005
    [14] 李莉,谷鑫. 双永磁同步电机滑模同步控制仿真研究[J]. 计算机仿真,2017,34(9): 331-335, 369. doi: 10.3969/j.issn.1006-9348.2017.09.071

    LI Li,GU Xin. Simulation research on sliding mode synchronous control of dual permanent magnet synchronous motor[J]. Computer Integrated Manufacturing Systems,2017,34(9): 331-335, 369. (in Chinese) doi: 10.3969/j.issn.1006-9348.2017.09.071
    [15] 王飚,林少军,柯吉. 带有滑模观测器的永磁同步电机改进型PID控制[J]. 微电机,2021,54(7): 66-72, 112. doi: 10.3969/j.issn.1001-6848.2021.07.013

    WANG Biao,LIN Shaojun,KE Ji. Improved PID control of permanent magnet synchronous motor with sliding mode observer[J]. Micromotors,2021,54(7): 66-72, 112. (in Chinese) doi: 10.3969/j.issn.1001-6848.2021.07.013
    [16] 吴航. 基于滑模观测器的表贴式永磁同步电机无位置传感器控制策略研究[D]. 杭州: 浙江大学, 2021.

    WU Hang. Research on sensorless control strategy of surface mounted permanent magnet synchronous motor based on sliding mode observer[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
    [17] HUANG Xianghui,GUAN Penglin,PAN Hongguang,et al. Research on grey predictive control of PMSM based on reduced-order luenberger observer[J]. Journal of Electrical Engineering & Technology,2021,16(5): 2635-2646.
    [18] ZAKARIA B,ZINEB K,ABDEIHADI E. Fuzzy improvement on luenberger observer based induction motor parameters estimation for high performances sensorless drive[J]. Journal of Electrical Engineering & Technology,2020,15(5): 2179-2197.
    [19] 李书领,段松凯,李书良. 基于迭代优化的多电机交叉耦合控制方法研究[J]. 电气传动,2021,51(7): 46-51. doi: 10.19457/j.1001-2095.dqcd20670

    LI Shuling,DUAN Songkai,LI Shuliang. Research on multi motor cross coupling control method based on iterative optimization[J]. Electric Drive,2021,51(7): 46-51. (in Chinese) doi: 10.19457/j.1001-2095.dqcd20670
    [20] CAO Songyin,LIU Jun,YI Yang. Non-singular terminal sliding mode adaptive control of permanent magnet synchronous motor based on a disturbance observer[J]. The Journal of Engineering,2019,2019(15): 629-634. doi: 10.1049/joe.2018.9395
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  134
  • HTML浏览量:  56
  • PDF量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2023-04-19

目录

    /

    返回文章
    返回