留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的减阻沟槽壁面形状优化

李超群 唐硕 李易 耿子海

李超群, 唐硕, 李易, 耿子海. 基于神经网络的减阻沟槽壁面形状优化[J]. 航空动力学报, 2022, 37(3): 639-648. doi: 10.13224/j.cnki.jasp.20210683
引用本文: 李超群, 唐硕, 李易, 耿子海. 基于神经网络的减阻沟槽壁面形状优化[J]. 航空动力学报, 2022, 37(3): 639-648. doi: 10.13224/j.cnki.jasp.20210683
LI Chaoqun, TANG Shuo, LI Yi, GENG Zihai. Sub-optimization of riblet shape based on neural networks[J]. Journal of Aerospace Power, 2022, 37(3): 639-648. doi: 10.13224/j.cnki.jasp.20210683
Citation: LI Chaoqun, TANG Shuo, LI Yi, GENG Zihai. Sub-optimization of riblet shape based on neural networks[J]. Journal of Aerospace Power, 2022, 37(3): 639-648. doi: 10.13224/j.cnki.jasp.20210683

基于神经网络的减阻沟槽壁面形状优化

doi: 10.13224/j.cnki.jasp.20210683
基金项目: 装备预研
详细信息
    作者简介:

    李超群(1995-),男,博士生,主要从事微结构壁面减阻与优化研究。

    通讯作者:

    李易(1984-),男,副教授,博士,主要从事飞行器设计研究。E-mail:dr_liyi@nwpu.edu.cn

  • 中图分类号: V211.3

Sub-optimization of riblet shape based on neural networks

  • 摘要: 针对沟槽外形减阻问题,采用基于神经网络的方法对沟槽壁面形状进行外形优化。模型采用槽道流动模型,控制方程为黏性不可压缩Navier-Stokes(NS)方程,流动求解采用直接数值模拟(DNS)方法,对于对流项的离散采用紧致4阶中心格式,对黏性项的离散采用4阶中心格式,时间推进采用3阶Runge-Kutta格式。在神经网络优化过程中,约束方程为不可压NS方程,采用基于在线学习的自适应控制器,使用基于抑制展向切应力的控制律,控制量的产生由壁面变形提供。优化结果表明,壁面最大减阻效果可达17.41%。对于优化后的壁面,湍流强度降低了19.68%,同时壁面的涡量与雷诺切应力亦有所降低。由于湍流流动非定常,因此优化得到的壁面形状亦是时变的,但变化的过程中整体上仍呈现流向沟槽的形状。

     

  • [1] 陈迎春,张美红,张淼,等.大型客机气动设计综述[J].航空学报,2019,40(1):522759.1-522759.7.
    [2] 胡海豹,宋保维,刘占一,等.基于湍流边界层时均速度分布的脊状表面减阻规律研究[J].航空动力学报,2009,24(5):1040-1047.
    [3] WALSH M J.Riblets as a viscous drag reduction technique[J].AIAA Journal,1983,21(4):485-486.
    [4] WALSH M J.Effect of detailed surface geometry on riblet drag reduction performance[J].Journal of Aircraft,1990,27(6):572-573.
    [5] LUCHINI P,MANZO F, POZZI A.Resistance of a grooved surface to parallel flow and cross-flow[J].Journal of Fluid Mechanics,1991,228:87-109.
    [6] 常跃峰,姜楠.沟槽壁湍流多尺度相干结构实验研究[J].航空动力学报,2008,23(5):788-795.
    [7] 王晋军,陈光.沟槽面湍流边界层近壁区拟序结构实验研究[J].航空学报,2001,22(5):400-405.
    [8] CUI G Y,PAN C,WU D,et al.Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J].Chinese Journal of Aeronautics,2019,32(11):2433-2442.
    [9] 王二丹,田海平,张静娴,等.超疏水壁面湍流边界层减阻机理的TRPIV实验[J].航空动力学报,2016,31(12):2870-2877.
    [10] SUNDARAM S,VISWANATH P R,RUDRAKUMAR S.Viscous drag reduction using riblets on a NACA 0012 airfoil to moderate incidence[J].AIAA Journal,1996,34(4):676-682.
    [11] SUBASHCHANDAR N,RAJEEV K,SUNDARAM S.Drag reduction due to riblets on a GAW(2) airfoil[J].Jornal of Aircraft,1999,36(5):890-892.
    [12] ZHANG Y F,CHEN H X,FU S,et al.Numerical study of an airfoil with riblets installed based on large eddy simulation[J].Aerospace Since and Technology,2018,78:661-670.
    [13] 张子良,张明明.仿生减阻翼型的气动性能[J].航空动力学报,2021,36(8):1740-1748.
    [14] JIMéNEZ J,MOIN P.The minimal flow unit in near-wall turbulence[J].Journal of Fluid Mechanics,1991,225:213-240.
    [15] CARLSON H,LUMLEY J.Active control in the turbulent wall layer of a minimal flow unit[J].Journal of Fluid Mechanics,1996,329:341-371.
    [16] KIM J,MOIN P.Application of a fractional-step method to incompressible Navier-Stokes equations[J].Journal of Computational Physics,1985,59(2):308-323.
    [17] CHOI H,MOIN P,KIM J.Direct numerical simulation of turbulent over riblets[J].Journal of Fluid Mechanics,1993,255:503-539.
    [18] CHU C D,KARNIADAKIS E G.A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J].Journal of Fluid Mechanics,1993,250:1-42.
    [19] GOLDSTEIN D,HANDLER R,SIROVICH L.Direct numerical simulation of turbulent flow over a modeled riblet covered surface[J].Journal of Fluid Mechanics,1995,302:333-376.
    [20] CHOI H,MOIN P,KIM J.Active turbulence control for drag reduction in wall-bounded flows[J].Journal of Fluid Mechanics,1994,262:75-110.
    [21] ENDO T,KASAGI N,SUZUKI Y.Feedback control of wall turbulence with wall deformation[J].International Journal of Heat and Fluid Flow,2000,21(5):568-575.
    [22] KANG S,CHOI H.Active wall motions for skin-friction drag reduction[J].Physics of Fluids,2000,12(12):3301-3304.
    [23] LEE C,KIM J,BABCOCK D,et al.Application of neural networks to turbulence control for drag reduction[J].Physics of Fluids,1997,9(6):1740-1747.
    [24] HAN Bingzheng,HUANG Weixi.Active control for drag reduction of turbulent channel flow based on convolutional neural networks[J].Physics of Fluids,2020,32(9):095108.1-095108.13.
    [25] RABAULT J,KUCHTA M,JENSEN A,et al.Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J].Journal of Fluid Mechanics,2019,865:281-302.
    [26] VIQUERAT J,RABAULT J,KUHNLE A,et al.Direct shape optimization through deep reinforcement learning[J].Journal of Computational Physics,2021,428:110080.1-110080.12.
    [27] LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
    [28] SHAH A,FAYYAZ H,RIZWAN M.Fourth-order central compact scheme for the numerical solution of incompressible Navier-Stokes equations[J].International Journal of Computer Mathematics,2017,94(12):2492-2507.
    [29] LORANG LV,PODVIN B,Le QUéRé P.Application of compact neural network for drag reduction in a turbulent channel flow at low Reynolds numbers[J].Physics of Fluids,2008,20(4):045104.1-045104.13.
    [30] POPE S B.Turbulent flows[M].Cambridge:Cambridge University Press,2000.
  • 加载中
计量
  • 文章访问数:  58
  • HTML浏览量:  9
  • PDF量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回