留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次燃烧对多喷管运载火箭底部热环境影响研究

周志坛 李怡庆 江平 包轶颖

周志坛, 李怡庆, 江平, 等. 二次燃烧对多喷管运载火箭底部热环境影响研究[J]. 航空动力学报, 2024, 39(6):20210694 doi: 10.13224/j.cnki.jasp.20210694
引用本文: 周志坛, 李怡庆, 江平, 等. 二次燃烧对多喷管运载火箭底部热环境影响研究[J]. 航空动力学报, 2024, 39(6):20210694 doi: 10.13224/j.cnki.jasp.20210694
ZHOU Zhitan, LI Yiqing, JIANG Ping, et al. Effect of secondary combustion on the multi-nozzle rocket base thermal environment[J]. Journal of Aerospace Power, 2024, 39(6):20210694 doi: 10.13224/j.cnki.jasp.20210694
Citation: ZHOU Zhitan, LI Yiqing, JIANG Ping, et al. Effect of secondary combustion on the multi-nozzle rocket base thermal environment[J]. Journal of Aerospace Power, 2024, 39(6):20210694 doi: 10.13224/j.cnki.jasp.20210694

二次燃烧对多喷管运载火箭底部热环境影响研究

doi: 10.13224/j.cnki.jasp.20210694
基金项目: 江西省自然科学青年基金(20224BAB211010)
详细信息
    作者简介:

    周志坛(1993-),男,讲师、硕士生导师,博士,主要从事高超声速飞行器力/热环境研究

  • 中图分类号: V19

Effect of secondary combustion on the multi-nozzle rocket base thermal environment

  • 摘要:

    火箭飞行时,尾焰中富燃燃气将继续与空气中氧气发生二次燃烧,导致尾流场温度升高。基于三维可压缩Navier-Stokes方程、混合RANS/LES湍流模型、DOM辐射模型和有限速率化学动力学模型建立多喷管火箭尾焰反应流模型,并通过与风洞试验数据对比验证了模型有效性。基于此,开展了6个不同高度下双喷管火箭和四喷管火箭反应流与冻结流流场对比分析。研究表明:二次燃烧主要发生在羽流混合层中,引起的流场峰值温度增幅随飞行高度增加而减小,最高可达10.16%,最低仅为0.86%。同一高度下,当羽流由近场向远场转变时,二次燃烧效应逐渐增强。相较于双喷管火箭,二次燃烧对四喷管火箭底部热环境影响更小。另外,多喷管火箭底部峰值热流随高度增加基本表现为先增大后减小的趋势。

     

  • 图 1  多喷管运载火箭几何模型

    Figure 1.  Geometric models of the multi-nozzle rockets

    图 2  多喷管运载火箭结构网格

    Figure 2.  Structured grids of the multi-nozzle rockets

    图 3  网格无关性分析

    Figure 3.  Grid independence verification

    图 4  算例几何与网格模型

    Figure 4.  Test model and its computational model

    图 5  数值结果与试验结果对比

    Figure 5.  Comparison between numerical results and experimental data

    图 6  多喷管运载火箭尾焰马赫数云图

    Figure 6.  Mach number contours of multi-nozzle rockets exhaust plume

    图 7  四喷管运载火箭羽流诱导激波

    Figure 7.  Plume induced shock of four-nozzle rockets

    图 8  多喷管运载火箭尾焰温度云图

    Figure 8.  Temperature contours of multi-nozzle rockets exhaust plume

    图 9  火箭尾焰温度峰值

    Figure 9.  Maximum temperature of the rocket exhaust plumes

    图 10  双喷管运载火箭羽流温度截面图

    Figure 10.  Planar temperature contours of two-nozzle rocket exhaust plume

    图 11  四喷管运载火箭羽流温度截面图

    Figure 11.  Planar temperature contours of four-nozzle rocket exhaust plume

    图 12  多喷管运载火箭底部热流云图

    Figure 12.  Base heat flux of multi-nozzle rockets

    图 13  多喷管运载火箭反应流温度等值面

    Figure 13.  Temperature iso-surface of multi-nozzle rocket exhaust flowfields

    图 14  多喷管火箭底部热流峰值

    Figure 14.  Peak heat flux of the multi-nozzle rocket base

    表  1  H2/CO/O2二次燃烧反应体系

    Table  1.   Reaction mechanism of H2/CO/O2 afterburning

    反应方程式 Ar/(m, kmol, s) NT EAr/(J/kmol)
    H2+O=OH+H 5.17×108 2.27 2.91×107
    H+O2=OH+O 3.18×1011 −0.49 6.75×107
    OH+H2=H2O+H 5.89×108 1.88 1.32×107
    OH+OH=H2O+O 3.40×107 2.26 −7.47×106
    O+H+M=OH+M 1.58×1010 −1.00 0
    H+H+M=H2+M 4.96×109 −1.21 2.56×106
    H+OH+M=H2O+M 7.83×1011 −2.54 5.05×105
    O+O+M=O2+M 1.89×107 0.00 −7.48×106
    CO+OH=CO2+H 5.19×106 2.22 −5.78×107
    CO+O+M=CO2+M 6.17×108 0 1.26×107
    下载: 导出CSV

    表  2  喷管入口气体摩尔组分

    Table  2.   Gas mole fractions at the nozzle inlet

    组分摩尔分数
    H2O0.39
    CO20.26
    CO0.25
    H20.06
    H0.03
    OH0.01
    下载: 导出CSV

    表  3  不同高度下的来流条件

    Table  3.   Freestream conditions under different altitudes

    飞行高度/km 压强/Pa 温度/K 来流马赫数
    15 11960 217 1.54
    20 6587 217 1.96
    25 2616 221 2.40
    30 1210 226 2.84
    35 580 236 3.24
    40 300 249 3.60
    下载: 导出CSV
  • [1] 罗天培,刘瑞敏,李茂,等. 基于DPM的试验台导流槽喷水冷却数值研究[J]. 航空动力学报,2018,33(2): 497-507. LUO Tianpei,LIU Ruimin,LI Mao,et al. Numerical investigations of water-spray cooling effect on test stand’s deflector based on DPM[J]. Journal of Aerospace Power,2018,33(2): 497-507. (in Chinese

    LUO Tianpei, LIU Ruimin, LI Mao, et al. Numerical investigations of water-spray cooling effect on test stand’s deflector based on DPM[J]. Journal of Aerospace Power, 2018, 33(2): 497-507. (in Chinese)
    [2] FRY D,MADZUNKOV S,SIMCIC J,et al. Application of scaling methods to foster ground development of active shielding concepts for space exploration[J]. Acta Astronautica,2021,178: 296-307. doi: 10.1016/j.actaastro.2020.08.038
    [3] ZHOU Zhitan,LIANG Xiaoyang,ZHAO Changfang,et al. Investigations of base thermal environment on four-nozzle liquid launch vehicle at high altitude[J]. Journal of Spacecraft and Rockets,2020,57(1): 49-57. doi: 10.2514/1.A34492
    [4] 闫指江,沈丹,吴彦森,等. 多喷管运载火箭底部热环境研究[J]. 导弹与航天运载技术,2021(1): 105-109,114. YAN Zhijiang,SHEN Dan,WU Yansen,et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles,2021(1): 105-109,114. (in Chinese

    YAN Zhijiang, SHEN Dan, WU Yansen, et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles, 2021(1): 105-109, 114. (in Chinese)
    [5] 张涛,孙冰. 某探测器上火箭发动机热防护仿真与设计[J]. 航空动力学报,2010,25(6): 1407-1411. ZHANG Tao,SUN Bing. Simulation and design of thermal protection of rocket motor in certain detector[J]. Journal of Aerospace Power,2010,25(6): 1407-1411. (in Chinese

    ZHANG Tao, SUN Bing. Simulation and design of thermal protection of rocket motor in certain detector[J]. Journal of Aerospace Power, 2010, 25(6): 1407-1411. (in Chinese)
    [6] 周志坛,丁逸夫,乐贵高,等. 高空飞行环境中液体运载火箭底部热环境研究[J]. 宇航学报,2019,40(5): 577-584. ZHOU Zhitan,DING Yifu,LE Guigao,et al. Studies on thermal environment of liquid launch vehicle tail compartmentat high altitude[J]. Journal of Astronautics,2019,40(5): 577-584. (in Chinese

    ZHOU Zhitan, DING Yifu, LE Guigao, et al. Studies on thermal environment of liquid launch vehicle tail compartmentat high altitude[J]. Journal of Astronautics, 2019, 40(5): 577-584. (in Chinese)
    [7] 谢政,谢建,常正阳,等. 火箭发射燃气流二次燃烧数值研究[J]. 宇航学报,2017,38(5): 542-549. XIE Zheng,XIE Jian,CHANG Zhengyang,et al. Numerical research on jet secondary combustion of rocket launch[J]. Journal of Astronautics,2017,38(5): 542-549. (in Chinese

    XIE Zheng, XIE Jian, CHANG Zhengyang, et al. Numerical research on jet secondary combustion of rocket launch[J]. Journal of Astronautics, 2017, 38(5): 542-549. (in Chinese)
    [8] ZHUKOV V P. The impact of methane oxidation kinetics on a rocket nozzle flow[J]. Acta Astronautica,2019,161: 524-530. doi: 10.1016/j.actaastro.2019.01.001
    [9] GONZÁLEZ D R,WALLMAN P,SANFORD M,et al. Characterization of rocket-plume fluid-dynamic environment using numerical and experimental approaches[J]. Journal of Spacecraft and Rockets,2013,50(3): 527-539. doi: 10.2514/1.A32319
    [10] BAO Xingdong,YU Xilong,WANG Zhenhua,et al. Numerical investigation on flow and radiation characteristics of solid rocket motor plume near the ground[J]. Procedia Computer Science,2020,174: 645-650. doi: 10.1016/j.procs.2020.06.137
    [11] PERGAMENT H S,JENSEN D E. Influence of chemical kinetic and turbulent transport coefficients on afterburning rocket plumes[J]. Journal of Spacecraft and Rockets,1971,8(6): 643-649. doi: 10.2514/3.59705
    [12] RAO R,SINHA K,CANDLER G,et al. Numerical simulations of Atlas II rocket motor plumes: AIAA 1999-2258[R]. Reston,Virigina: AIAA,1999.
    [13] CANDLER G,RAO R,SINHA K. Simulations of Atlas-II rocket motor plumes: AIAA 2001-354 [R]. Reston,Virigina: AIAA,2001.
    [14] POUBEAU A,PAOLI R,CARIOLLE D. Evaluation of afterburning chemistry in solid-rocket motor jets using an off-line model[J]. Journal of Spacecraft and Rockets,2016,53(2): 380-388. doi: 10.2514/1.A33311
    [15] 乔野,聂万胜,丰松江,等. 复燃对氢氧火箭发动机尾焰流场及辐射特性影响数值研究[J]. 导弹与航天运载技术,2016(2): 22-25,71. QIAO Ye,NIE Wansheng,FENG Songjiang,et al. Numerical research on influence exerted by afterburning on flow field and radiation characteristics of LH2/LOX rocket engine[J]. Missiles and Space Vehicles,2016(2): 22-25,71. (in Chinese

    QIAO Ye, NIE Wansheng, FENG Songjiang, et al. Numerical research on influence exerted by afterburning on flow field and radiation characteristics of LH2/LOX rocket engine[J]. Missiles and Space Vehicles, 2016(2): 22-25, 71. (in Chinese)
    [16] 李霞,刘建国,王俊,等. 固体火箭发动机喷焰复燃及其对红外辐射的影响[J]. 红外与激光工程,2018,47(9): 0904003. LI Xia,LIU Jianguo,WANG Jun,et al. Afterburning and infrared radiation effects of exhaust plumes for solid rocket motors[J]. Infrared and Laser Engineering,2018,47(9): 0904003. (in Chinese doi: 10.3788/IRLA201847.0904003

    LI Xia, LIU Jianguo, WANG Jun, et al. Afterburning and infrared radiation effects of exhaust plumes for solid rocket motors[J]. Infrared and Laser Engineering, 2018, 47(9): 0904003. (in Chinese) doi: 10.3788/IRLA201847.0904003
    [17] ZHOU Zhitan,LE Guigao,ZHANG Liangjun. Numerical studies of afterburning on impingement flowfield of the four-engine rockets[J]. Journal of Spacecraft and Rockets,2020,57(6): 1284-1294. doi: 10.2514/1.A34672
    [18] 任泓帆,朱定强. 液体火箭发动机尾焰复燃对红外辐射特性的影响[J]. 推进技术,2018,39(6): 1227-1233. REN Hongfan,ZHU Dingqiang. Effects of afterburning on infrared radiation characteristics of liquid rocket exhaust plume[J]. Journal of Propulsion Technology,2018,39(6): 1227-1233. (in Chinese

    REN Hongfan, ZHU Dingqiang. Effects of afterburning on infrared radiation characteristics of liquid rocket exhaust plume[J]. Journal of Propulsion Technology, 2018, 39(6): 1227-1233. (in Chinese)
    [19] 杨桦,姜毅,陶倩楠,等. 复燃现象对导流器排导流场影响数值分析[J]. 固体火箭技术,2020,43(3): 393-399. YANG Hua,JIANG Yi,TAO Qiannan,et al. Numerical analysis of afterburning’s influence on division flow field with deflector[J]. Journal of Solid Rocket Technology,2020,43(3): 393-399. (in Chinese

    YANG Hua, JIANG Yi, TAO Qiannan, et al. Numerical analysis of afterburning’s influence on division flow field with deflector[J]. Journal of Solid Rocket Technology, 2020, 43(3): 393-399. (in Chinese)
    [20] SAKAMI M,CHARETTE A,LE DEZ V. Radiative heat transfer in three-dimensional enclosures of complex geometry by using the discrete-ordinates method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1998,59(1/2): 117-136.
    [21] FREY A E,T’IEN J S. A theory of flame spread over a solid fuel including finite-rate chemical kinetics[J]. Combustion and Flame,1979,36: 263-289. doi: 10.1016/0010-2180(79)90064-6
    [22] TSANG W,HAMPSON R F. Chemical kinetic data base for combustion chemistry: Part I methane and related compounds[J]. Journal of Physical and Chemical Reference Data,1986,15(3): 1087-1279. doi: 10.1063/1.555759
    [23] VARGA T,OLM C,NAGY T,et al. Development of a joint hydrogen and syngas combustion mechanism based on an optimization approach[J]. International Journal of Chemical Kinetics,2016,48(8): 407-422. doi: 10.1002/kin.21006
    [24] MEHTA M,CANABAL F,TASHAKKOR S B,et al. Numerical base heating sensitivity study for a four-rocket engine core configuration[J]. Journal of Spacecraft and Rockets,2013,50(3): 509-526. doi: 10.2514/1.A32287
    [25] HAN D,MUNGAL M G. Direct measurement of entrainment in reacting/nonreacting turbulent jets[J]. Combustion and Flame,2001,124(3): 370-386. doi: 10.1016/S0010-2180(00)00211-X
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  38
  • HTML浏览量:  20
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 网络出版日期:  2024-01-23

目录

    /

    返回文章
    返回