留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分级旋流燃烧室流动及碳烟排放特性研究

胡阁 李建中 张靖周 金武

胡阁, 李建中, 张靖周, 等. 分级旋流燃烧室流动及碳烟排放特性研究[J]. 航空动力学报, 2024, 39(6):20210695 doi: 10.13224/j.cnki.jasp.20210695
引用本文: 胡阁, 李建中, 张靖周, 等. 分级旋流燃烧室流动及碳烟排放特性研究[J]. 航空动力学报, 2024, 39(6):20210695 doi: 10.13224/j.cnki.jasp.20210695
HU Ge, LI Jianzhong, ZHANG Jingzhou, et al. Flow field and soot emission characteristics of staged swirling combustor[J]. Journal of Aerospace Power, 2024, 39(6):20210695 doi: 10.13224/j.cnki.jasp.20210695
Citation: HU Ge, LI Jianzhong, ZHANG Jingzhou, et al. Flow field and soot emission characteristics of staged swirling combustor[J]. Journal of Aerospace Power, 2024, 39(6):20210695 doi: 10.13224/j.cnki.jasp.20210695

分级旋流燃烧室流动及碳烟排放特性研究

doi: 10.13224/j.cnki.jasp.20210695
基金项目: 国家科技重大专项(2017-Ⅲ-0002-0026,2019-Ⅲ-0014-0058)
详细信息
    作者简介:

    胡阁(1993-),男,博士生,主要从事航空发动机燃烧室性能研究

    通讯作者:

    李建中(1979-),男,教授、博士生导师,博士,主要从事航空发动机燃烧技术研究。E-mail:ljzh0629@nuaa.edu.cn

  • 中图分类号: V231.2

Flow field and soot emission characteristics of staged swirling combustor

  • 摘要:

    为了探究某分级旋流燃烧室流动及碳烟排放特性,结合试验和数值仿真方法对流动特性进行研究,揭示了主、副模分级旋流燃烧室的流动发展过程。通过大涡模拟(LES)非定常流动计算,结果表明:副模出口附近速度存在着1820 Hz的周期性振荡,而主模出口流动未见明显脉动,同时钝体下游存在进动涡核(PVC)结构;对分级旋流燃烧室碳烟排放的数值研究,结果表明:中心回流区附近是碳烟主要生成区域,在贫油燃烧时,随着油气比增大,碳烟浓度显著增大,碳烟质量浓度随沿程轴向距离增加均呈现先上升后减小趋势,且其峰值对应轴向位置逐渐后移,最终导致燃烧室出口冒烟排放的差异。

     

  • 图 1  燃烧室结构示意图

    Figure 1.  Diagram of combustor structure

    图 2  PIV流场试验系统图

    Figure 2.  Schematic of PIV experiment system

    图 3  YOZ截面流场结构

    Figure 3.  Flow field on central section YOZ

    图 4  轴向速度频谱

    Figure 4.  Axial velocity spectrum

    图 5  P轴向速度时间演变分布

    Figure 5.  Axial velocity time evolution distribution of point P

    图 6  一个周期内不同时刻的流场分布

    Figure 6.  Flow field at different times in a period

    图 7  瞬时流场结构特征

    Figure 7.  Instantaneous flow field structure

    图 8  OTDF及燃油雾化特性

    Figure 8.  OTDF and fuel atomization characteristics

    图 9  燃烧室YOZ截面温度分布云图

    Figure 9.  Temperature distribution on section YOZ

    图 10  不同ϕ时碳烟质量浓度沿轴向的分布

    Figure 10.  Distribution of soot mass concentration along axial direction under different ϕ

    图 11  燃烧室YOZ截面Soot质量分数及流线图

    Figure 11.  Mass fraction and streamline diagram of Soot on combustion chamber section YOZ

    图 12  燃烧室YOZ截面C2H2质量分数分布

    Figure 12.  Mass fraction of C2H2 on combustion chamber section YOZ

    图 13  燃烧室YOZ截面碳烟表面增长速率

    Figure 13.  Soot growth rate on combustion chamber section YOZ

    图 14  不同ϕ时燃烧室YOZ截面碳烟氧化速率

    Figure 14.  Soot oxidation rate on section YOZ under different ϕ

    表  1  数值计算工况

    Table  1.   1 Numerical simulation conditions

    工况 进口温度/K 进口压力/Pa 分级比τ 油气比
    a 700 911925 0.2 0.034
    b 700 911925 0.2 0.04
    c 700 911925 0.2 0.046
    d 700 911925 0.2 0.052
    下载: 导出CSV
  • [1] LIEUWEN T C,YANG V. Gas turbine emissions[M]. 2nd ed. Cambridge: Cambridge University Press. 2013.
    [2] LEFEBVRE A H,WHITELAW J H. Gas turbine combustion[J]. International Journal of Heat and Fluid Flow,1984,5(4): 228.
    [3] 张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350. ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese

    ZHANG Chi, LIN Yuzhen, XU Huasheng, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350. (in Chinese)
    [4] FU Yongqiang,CAI Jun,JENG S M,et al. Characteristics of the swirling flow generated by a counter-rotating swirler: AIAA 2007-5690 [R]. Reston,Virigina: AIAA,2007.
    [5] FU Yongqiang,JENG S M,TACINA R. Confinement effects on the swirling flow generated by a helical axial swirler: AIAA 2006-545 [R]. Reston,Virigina: AIAA,2006.
    [6] DEWANJI D,RAO A G,POURQUIE M,et al. Investigation of flow characteristics in lean direct injection combustors[J]. Journal of Propulsion and Power,2012,28(1): 181-196. doi: 10.2514/1.B34264
    [7] DEWANJI D,RAO A G. Spray combustion modeling in lean direct injection combustors: Part I single-element LDI[J]. Combustion Science and Technology,2015,187(4): 537-557. doi: 10.1080/00102202.2014.965810
    [8] PATEL N,MENON S. Simulation of spray-turbulence-flame interactions in a lean direct injection combustor[J]. Combustion and Flame,2008,153(1/2): 228-257.
    [9] PATEL N,KıRTAŞ M,SANKARAN V,et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute,2007,31(2): 2327-2334. doi: 10.1016/j.proci.2006.07.232
    [10] BROATCH A,CARRERES M,GARCÍA-TÍSCAR J,et al. Spectral analysis and modelling of the spray liquid injection in a lean direct injection (LDI) gas turbine combustor through Eulerian-Lagrangian large eddy simulations[J]. Aerospace Science and Technology,2021,118: 106992. doi: 10.1016/j.ast.2021.106992
    [11] WANG S,YANG V,HSIAO G,et al. Large-eddy simulations of gas-turbine swirl injector flow dynamics[J]. Journal of Fluid Mechanics,2007,583: 99-122. doi: 10.1017/S0022112007006155
    [12] DHANUKA S K,TEMME J E,DRISCOLL J. Unsteady aspects of lean premixed prevaporized gas turbine combustors: flame-flame interactions[J]. Journal of Propulsion & Power,2010,273: 631-641.
    [13] STURGESS G J,ZELINA J,SHOUSE D T,et al. Emissions reduction technologies for military gas turbine engines[J]. Journal of Propulsion and Power,2005,21(2): 193-217. doi: 10.2514/1.6528
    [14] DHANUKA S K,TEMME J E,DRISCOLL J F,et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute,2009,32(2): 2901-2908. doi: 10.1016/j.proci.2008.06.155
    [15] 于涵,索建秦,朱鹏飞,等. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报,2018,36(5): 816-823. YU Han,SUO Jianqin,ZHU Pengfei,et al. The characteristic of flow field and emissions of a concentric staged lean direct injection(LDI) combustor[J]. Journal of Northwestern Polytechnical University,2018,36(5): 816-823. (in Chinese doi: 10.3969/j.issn.1000-2758.2018.05.002

    YU Han, SUO Jianqin, ZHU Pengfei, et al. The characteristic of flow field and emissions of a concentric staged lean direct injection(LDI) combustor[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 816-823. (in Chinese) doi: 10.3969/j.issn.1000-2758.2018.05.002
    [16] 于涵,索建秦,郑龙席. 带收敛出口的单元贫油直喷燃烧室冷态和热态流动特性研究[J]. 推进技术,2019,40(3): 608-618. YU Han,SUO Jianqin,ZHENG Longxi. Investigation of non-reaction and reaction flow characteristic of single element lean direct injection combustor with convergent outlet[J]. Journal of Propulsion Technology,2019,40(3): 608-618. (in Chinese

    YU Han, SUO Jianqin, ZHENG Longxi. Investigation of non-reaction and reaction flow characteristic of single element lean direct injection combustor with convergent outlet[J]. Journal of Propulsion Technology, 2019, 40(3): 608-618. (in Chinese)
    [17] 李乐,索建秦,于涵,等. 中心分级多点直喷燃烧室冷态流动特性研究[J]. 推进技术,2021,42(6): 1339-1350. LI Le,SUO Jianqin,YU Han,et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology,2021,42(6): 1339-1350. (in Chinese

    LI Le, SUO Jianqin, YU Han, et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology, 2021, 42(6): 1339-1350. (in Chinese)
    [18] CHEN Jian,LI Jianzhong,YUAN Li,et al. Flow and flame characteristics of a RP-3 fuelled high temperature rise combustor based on RQL[J]. Fuel,2019,235: 1159-1171. doi: 10.1016/j.fuel.2018.08.115
    [19] KUNDU K,PENKO P,VANOVERBEKE T. A practical kinetic mechanism for computing combustion in gas turbine engines: AIAA 1999-2218 [R]. Reston,Virigina: AIAA,1999.
    [20] BROOKES S,MOSS J. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames[J]. Combustion and Flame,1999,116(4): 486-503. doi: 10.1016/S0010-2180(98)00056-X
    [21] 秦皓,丁志磊,李海涛,等. LESS燃烧室非定常旋流流动[J]. 航空动力学报,2015,30(7): 1566-1575. QIN Hao,DING Zhilei,LI Haitao,et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power,2015,30(7): 1566-1575. (in Chinese

    QIN Hao, DING Zhilei, LI Haitao, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7): 1566-1575. (in Chinese)
    [22] 杨思恒,王建臣,张弛,等. 三头部中心分级燃烧室出口温度分布研究[J]. 工程热物理学报,2021,42(10): 2737-2748. YANG Siheng,WANG Jianchen,ZHANG Chi,et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics,2021,42(10): 2737-2748. (in Chinese

    YANG Siheng, WANG Jianchen, ZHANG Chi, et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2737-2748. (in Chinese)
    [23] BASHIRNEZHAD K,MOGHIMAN M,ZAHMATKESH I. Studies on soot formation and combustion in turbulent spray flames: modeling and experimental measurement[J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition,2007,26: 45-54.
    [24] PENKO P,KUNDU K,SIOW Y,et al. A kinetic mechanism for calculation of pollutant species in Jet-a combustion: AIAA 2000-3035[R]. Reston, Virigina: AIAA, 2000.
    [25] 李宇航,张弛,王建臣,等. 预燃级对TeLESS Ⅱ燃烧室冒烟排放的影响[J]. 航空动力学报,2018,33(10): 2424-2433. LI Yuhang,ZHANG Chi,WANG Jianchen,et al. Effect of pilot strutures on smoke emissions in the TeLESS Ⅱ combustor[J]. Journal of Aerospace Power,2018,33(10): 2424-2433. (in Chinese

    LI Yuhang, ZHANG Chi, WANG Jianchen, et al. Effect of pilot strutures on smoke emissions in the TeLESS Ⅱ combustor[J]. Journal of Aerospace Power, 2018, 33(10): 2424-2433. (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  37
  • HTML浏览量:  9
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回