留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一型逆时针主旋翼的双发直升机进气流场数值仿真分析

杨柳 刘雨

杨柳, 刘雨. 一型逆时针主旋翼的双发直升机进气流场数值仿真分析[J]. 航空动力学报, 2024, 39(6):20210697 doi: 10.13224/j.cnki.jasp.20210697
引用本文: 杨柳, 刘雨. 一型逆时针主旋翼的双发直升机进气流场数值仿真分析[J]. 航空动力学报, 2024, 39(6):20210697 doi: 10.13224/j.cnki.jasp.20210697
YANG Liu, LIU Yu. Numerical simulation analysis of inlet flow field of anti-clockwise main rotor helicopter with twin engine[J]. Journal of Aerospace Power, 2024, 39(6):20210697 doi: 10.13224/j.cnki.jasp.20210697
Citation: YANG Liu, LIU Yu. Numerical simulation analysis of inlet flow field of anti-clockwise main rotor helicopter with twin engine[J]. Journal of Aerospace Power, 2024, 39(6):20210697 doi: 10.13224/j.cnki.jasp.20210697

一型逆时针主旋翼的双发直升机进气流场数值仿真分析

doi: 10.13224/j.cnki.jasp.20210697
详细信息
    作者简介:

    杨柳(1995-),女,助理工程师,硕士,主要从事航空发动机飞行试验研究

  • 中图分类号: V231.3

Numerical simulation analysis of inlet flow field of anti-clockwise main rotor helicopter with twin engine

  • 摘要:

    通过数值仿真方法模拟了一型逆时针主旋翼的双发直升机在稳定前飞、侧飞、悬停状态下的流场,获取了不同飞行状态下的进气总压损失和进气温升。结果显示:稳定前飞时发动机进气面平均总压损失随飞行速度增大而增大,最大约为1.61%;侧飞时下游发动机进气道外侧区域存在较大的进气总压损失,且下游发动机进气存在较大温升;同速度下右侧飞时下游发动机进气温升幅度更高,对发动机工作性能影响更大;悬停状态下发动机进气面平均总压损失最大约为1.14%。通过与该型直升机飞行数据对比,验证了数值仿真结果的有效性。研究结果可以为国内同类型直升机试飞科目规划和发动机安装损失评估提供参考。

     

  • 图 1  数值仿真模型

    Figure 1.  Numerical simulation model

    图 2  拼接网格原理图

    Figure 2.  Schematic diagram of splicing mesh

    图 3  网格

    Figure 3.  Mesh

    图 4  翼面压差对比图

    Figure 4.  Comparison diagram of pressure difference on airfoil

    图 5  数值仿真边界条件类型

    Figure 5.  Boundary condition types of numerical simulation

    图 6  不同速度稳定前飞时进气道总压损失分布(顺航向)

    Figure 6.  Distribution of inlet total pressure loss during steady forward flight at different speeds(along course)

    图 7  前飞状态下双发进气损失统计

    Figure 7.  Statistic of engine intake loss in forward flight

    图 8  Vi =260 km/h前飞状态进排气流线分布

    Figure 8.  Inlet and exhaust streamline distribution in forward flight when Vi =260 km/h

    图 9  悬停时进气道总压损失分布(顺航向)

    Figure 9.  Distribution of inlet total pressure loss during hover (along course)

    图 10  悬停状态下进排气流线分布

    Figure 10.  Inlet and exhaust streamline distribution in hovering

    图 11  侧飞时进气道总压损失分布(顺航向, Vi =80 km/h)

    Figure 11.  Distribution of inlet total pressure loss during sideward flight (along course, Vi =80 km/h)

    图 12  侧飞状态下进排气流线分布(Vi =80 km/h)

    Figure 12.  Inlet and exhaust streamline distribution in sideward flight (Vi =80 km/h)

    图 13  侧飞时进气道温升分布(顺航向,Vi =80 km/h)

    Figure 13.  Distribution of temperature rise during sideward flight (along course,Vi =80 km/h)

    图 14  某型直升机近地机动飞行时发动机进气温度

    Figure 14.  Engine intake temperature of a helicopter during near ground maneuver

    表  1  旋翼模型主要参数

    Table  1.   Main parameters of rotor model

    参数 数值 参数 数值
    桨叶片数 2 旋翼半径/m 2.32
    弦长/m 0.35 展弦比 5.25
    旋翼转速/(rad/s) 52.72 俯仰角/(°) 8.9
    下载: 导出CSV

    表  2  数值仿真状态点及边界条件

    Table  2.   State points and boundary condition of numerical simulation

    序号 姿态 Vi/
    (km/h)
    Qinlet Qnozzle tnozzle
    1 稳定前飞 140 0.65 0.65 t1
    2 160 0.67 0.67 t2
    3 180 0.70 0.70 t3
    4 200 0.72 0.72 t4
    5 220 0.79 0.79 t5
    6 260 0.90 0.90 t6
    7 左侧飞 80 0.65 0.65 t1
    8 右侧飞 80 0.65 0.65 t1
    9 无地效悬停 0 0.90 0.90 t6
    10 有地效悬停 0 0.90 0.90 t6
    注:Vi为指示空速,Qinlet为无量纲进气道流量,Qnozzle为无量  纲喷管出口流量,tnozzle为喷管出口总温。
    下载: 导出CSV

    表  3  悬停状态下发动机进气损失与温升统计

    Table  3.   Statistic of engine intake loss and temperature rise in hovering

    工况 p/% t/%
    左发 右发 左发 右发
    无地效悬停 1.14 1.11 0.33 0.16
    有地效悬停 1.06 1.10 0.09 0.15
    下载: 导出CSV

    表  4  侧飞状态下双发进气损失与温升统计

    Table  4.   Statistic of engine intake loss and temperature rise in sideward flight

    工况 p/% t/%
    左发 右发 左发 右发
    左侧飞 0.96 1.38 0.003 2.22
    右侧飞 1.51 1.16 16.84 0.014
    下载: 导出CSV
  • [1] 肖中云. 旋翼流场数值模拟方法研究[D]. 四川 绵阳: 中国空气动力研究与发展中心,2007. XIAO Zhongyun. Study on numerical simulation method of rotor flow field[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center,2007. (in Chinese

    XIAO Zhongyun. Study on numerical simulation method of rotor flow field[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2007. (in Chinese)
    [2] 沈雳,于琦,郑甲宏. 直升机发动机装机功率损失试飞研究[J]. 航空科学技术,2015,26(3): 39-43. SHEN Li,YU Qi,ZHENG Jiahong. Flight test study on the engines power loss of helicopter[J]. Aeronautical Science & Technology,2015,26(3): 39-43. (in Chinese doi: 10.3969/j.issn.1007-5453.2015.03.009

    SHEN Li, YU Qi, ZHENG Jiahong. Flight test study on the engines power loss of helicopter[J]. Aeronautical Science & Technology, 2015, 26(3): 39-43. (in Chinese) doi: 10.3969/j.issn.1007-5453.2015.03.009
    [3] 江雄,陈作斌. 用双时间法数值模拟悬停旋翼流场[J]. 空气动力学学报,1998,16(3): 288-296. JIANG Xiong,CHEN Zuobin. Numerical simulation of a hovering rotor flowfield using a dual time method[J]. Acta Aerodynamica Sinica,1998,16(3): 288-296. (in English

    JIANG Xiong, CHEN Zuobin. Numerical simulation of a hovering rotor flowfield using a dual time method[J]. Acta Aerodynamica Sinica, 1998, 16(3): 288-296. (in English)
    [4] BHATTACHARYYA S,CONLISK A. The structure of the rotor wake in ground effect: AIAA 2003-1255[R]. Reston,Virigina: AIAA,2003.
    [5] TANABE Y,SAITO S,OTANI I. Validation of computational results of rotor/fuselage interaction analysis using rFlow3D code[J]. JAXA Research & Development Report,2010,10: 1-14.
    [6] 叶靓,招启军,徐国华. 基于非结构嵌套网格方法的旋翼地面效应数值模拟[J]. 航空学报,2009,30(5): 780-786. YE Liang,ZHAO Qijun,XU Guohua. Numerical simulation on flowfield of rotor in ground effect based on unstructured embedded grid method[J]. Acta Aeronautica et Astronautica Sinica,2009,30(5): 780-786. (in Chinese doi: 10.3321/j.issn:1000-6893.2009.05.002

    YE Liang, ZHAO Qijun, XU Guohua. Numerical simulation on flowfield of rotor in ground effect based on unstructured embedded grid method[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 780-786. (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.05.002
    [7] POMIN H,WAGNER S. Navier-stokes analysis of helicopter rotor aerodynamics in hover and forward flight[J]. Journal of Aircraft,2002,39(5): 813-821. doi: 10.2514/2.3001
    [8] RAJAGOPALAN R G,LIM C K. Laminar flow analysis of a rotor in hover[J]. Journal of the American Helicopter Society,1991,36(1): 12-23. doi: 10.4050/JAHS.36.1.12
    [9] RAJAGOPALAN R G,MATHUR S R. Three dimensional analysis of a rotor in forward flight[J]. Journal of the American Helicopter Society,1993,38(3): 14-25. doi: 10.4050/JAHS.38.14
    [10] RAJAGOPALAN R G,BERG D E,KLIMAS P C. Development of a three-dimensional model for the darrieus rotor and its wake[J]. Journal of Propulsion and Power,1995,11(2): 185-195. doi: 10.2514/3.51410
    [11] 康宁,孙茂. 旋翼尾流与地面干扰时地面涡现象的研究[J]. 力学学报,1998,30(5): 615-620. KANG Ning,SUN Mao. Investigation of the ground vortex phenomenon due to the interaction between rotor’s wake and the ground[J]. Acta Mechanica Sinica,1998,30(5): 615-620. (in Chinese doi: 10.3321/j.issn:0459-1879.1998.05.012

    KANG Ning, SUN Mao. Investigation of the ground vortex phenomenon due to the interaction between rotor’s wake and the ground[J]. Acta Mechanica Sinica, 1998, 30(5): 615-620. (in Chinese) doi: 10.3321/j.issn:0459-1879.1998.05.012
    [12] 胡利,曹义华,赵明. 直升机旋翼机身发动机耦合流场数值模拟[J]. 航空动力学报,2008,23(10): 1882-1887. HU Li,CAO Yihua,ZHAO Ming. Numerical simulation of helicopter rotor-fuselage-engine aerodynamic interactions[J]. Journal of Aerospace Power,2008,23(10): 1882-1887. (in Chinese

    HU Li, CAO Yihua, ZHAO Ming. Numerical simulation of helicopter rotor-fuselage-engine aerodynamic interactions[J]. Journal of Aerospace Power, 2008, 23(10): 1882-1887. (in Chinese)
    [13] 于子文,曹义华. 涵道尾桨的CFD模拟与验证[J]. 航空动力学报,2006,21(1): 19-24. YU Ziwen,CAO Yihua. CFD simulation and validation of ducted tail rotor[J]. Journal of Aerospace Power,2006,21(1): 19-24. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.01.004

    YU Ziwen, CAO Yihua. CFD simulation and validation of ducted tail rotor[J]. Journal of Aerospace Power, 2006, 21(1): 19-24. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.01.004
    [14] 徐威阳. 直升机/涡轴发动机一体化安装气动性能研究[D]. 南京: 南京航空航天大学,2013. XU Weiyang. Study on aerodynamic performance of integrated installation of helicopter/turboshaft engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013. (in Chinese

    XU Weiyang. Study on aerodynamic performance of integrated installation of helicopter/turboshaft engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [15] 韩东,郭荣伟,万大为. 一种带前输出轴的直升机进气道性能试验研究[J]. 工程热物理学报,2001,22(6): 697-699. HAN Dong,GUO Rongwei,WAN Dawei,WAN Dawei. An investigation of the flow in a helicopter intake with front output shaft[J]. Journal of Engineering Thermophysics,2001,22(6): 697-699. (in Chinese doi: 10.3321/j.issn:0253-231X.2001.06.012

    HAN Dong, GUO Rongwei, WAN Dawei, WAN Dawei. An investigation of the flow in a helicopter intake with front output shaft[J]. Journal of Engineering Thermophysics, 2001, 22(6): 697-699. (in Chinese) doi: 10.3321/j.issn:0253-231X.2001.06.012
    [16] ORUC I,HORN J F,SHIPMAN J. Coupled flight dynamics and computational fluid dynamics simulations of rotorcraft/terrain interactions[J]. Journal of Aircraft,2017,54(6): 2228-2241. doi: 10.2514/1.C034101
    [17] 宗昆,李海旭,安强林. 舰船尾部空气流动控制对直升机着舰影响研究[C]//全国工业流体力学会议. 北京: 中国力学学会流体力学专业委员会,2018: 33-40. ZONG Kun,LI Haixu,AN Qianglin. Study on the influence of ship tail air flow control on helicopter landing[C]//National Conference on Industrial Hydrodynamics. Beijing: Fluid Mechanics Professional Committee of the Chinese Society of Mechanics,2018: 33-40.

    ZONG Kun, LI Haixu, AN Qianglin. Study on the influence of ship tail air flow control on helicopter landing[C]//National Conference on Industrial Hydrodynamics. Beijing: Fluid Mechanics Professional Committee of the Chinese Society of Mechanics, 2018: 33-40.
    [18] RABBOTT J P. Static-thrust measurements of the aerodynamic loading on a helicopter rotor blade[R]. NACA TN 3688,1956
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  39
  • HTML浏览量:  22
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 网络出版日期:  2024-01-20

目录

    /

    返回文章
    返回