留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化铝陶瓷燃气舵仿真与试验

白澔烔 石仲仑 薛海峰 蔡红明

白澔烔, 石仲仑, 薛海峰, 等. 氮化铝陶瓷燃气舵仿真与试验[J]. 航空动力学报, 2024, 39(6):20210698 doi: 10.13224/j.cnki.jasp.20210698
引用本文: 白澔烔, 石仲仑, 薛海峰, 等. 氮化铝陶瓷燃气舵仿真与试验[J]. 航空动力学报, 2024, 39(6):20210698 doi: 10.13224/j.cnki.jasp.20210698
BAI Haotong, SHI Zhonglun, XUE Haifeng, et al. Numerical simulation and test of AlN ceramic jet vane[J]. Journal of Aerospace Power, 2024, 39(6):20210698 doi: 10.13224/j.cnki.jasp.20210698
Citation: BAI Haotong, SHI Zhonglun, XUE Haifeng, et al. Numerical simulation and test of AlN ceramic jet vane[J]. Journal of Aerospace Power, 2024, 39(6):20210698 doi: 10.13224/j.cnki.jasp.20210698

氮化铝陶瓷燃气舵仿真与试验

doi: 10.13224/j.cnki.jasp.20210698
详细信息
    作者简介:

    白澔烔(2001-),男,博士生,研究领域为固体火箭发动机与CFD仿真。E-mail:Baiht0201@nuaa.edu.cn

  • 中图分类号: V433.9

Numerical simulation and test of AlN ceramic jet vane

  • 摘要:

    针对弹箭燃气舵轻量化问题,设计了基于高热导率氮化铝(AlN)陶瓷材料的新型燃气舵。为考察其可行性,建立了基于流固热耦合的非定常数值模拟方法,研究了氮化铝陶瓷燃气舵在不同舵偏角下的工作过程,并基于高温下陶瓷强度预测模型分析了燃气舵的抗热震能力。加工了氮化铝陶瓷燃气舵,开展了固体火箭发动机地面静态射流试验,并通过扫描电镜分析了试验结果。研究结果表明:数值仿真与试验结果基本一致,验证了数值模拟方法的有效性;对燃烧室总温为2284 K的固体火箭发动机,氮化铝陶瓷燃气舵可承受其燃气1 s内造成的最大机械冲击和热冲击;氮化铝陶瓷由于较高的热导率(理论达320 W/(m∙K)),有远优于常规结构陶瓷的抗热震性能,是一种良好的小型燃气舵选材。

     

  • 图 1  三维计算模型示意图

    Figure 1.  3D computational model diagram

    图 2  燃气舵坐标系图

    Figure 2.  Jet vane coordinate system diagram

    图 3  燃气舵舵面分区及相关术语

    Figure 3.  Partition and terminology of jet vane

    图 4  计算网格图

    Figure 4.  Computational grid diagram

    图 5  计算边界条件设置

    Figure 5.  Calculation boundary conditions setting diagram

    图 6  圆管温度云图对比

    Figure 6.  Comparison of temperature contour of cylinder

    图 7  燃气舵表面受力曲线

    Figure 7.  Surface force curve of jet vane

    图 8  受力峰值点处压强云图

    Figure 8.  Pressure contours at peak stress point

    图 9  t=0.001 s时刻流场温度云图

    Figure 9.  Temperature contour of flow at t=0.001 s

    图 10  氮化铝燃气舵陶瓷各剖面温度场云图

    Figure 10.  Temperature of AlN ceramic jet vanes in different sections

    图 11  氧化铝燃气舵陶瓷各剖面温度场云图

    Figure 11.  Temperature of Al2O3 ceramic jet vanes in different sections

    图 12  t = 0.2 s时刻1/2展长处燃气舵表面温度曲线

    Figure 12.  Surface temperature curve at 1/2 span of jet vanes at t = 0.2 s

    图 13  t = 0.2 s时刻燃气舵yoz平面最大主应力云图

    Figure 13.  Maximum principal stress contours in yoz section of jet vanes at t = 0.2 s

    图 14  0.2 s内燃气舵最大主应力及材料强度曲线

    Figure 14.  Maximum principal stress and material strength curve of jet vanes in 0.2 s

    图 15  1 s内燃气舵最大主应力、热应变及材料强度曲线

    Figure 15.  Maximum principal stress, thermal strain and material strength curve of jet vanes in 1 s

    图 16  t = 1 s时刻燃气舵1/2展长处温度曲线

    Figure 16.  Surface temperature curve at 1/2 span of jet vanes at t = 1 s

    图 17  t = 1 s时刻燃气舵位移量云图

    Figure 17.  Deformation of jet vane at t = 1 s

    图 18  试验用陶瓷燃气舵图像

    Figure 18.  Photograph of ceramics jet vanes for test

    图 19  发动机工作过程内弹道曲线

    Figure 19.  Internal ballistic curve of the motor during working process

    图 20  测试后陶瓷燃气舵图像

    Figure 20.  Apparent morphology ceramics jet vanes after test

    图 21  氮化铝陶瓷燃气舵上激光切割损伤

    Figure 21.  Laser cutting damage on AlN jet vane

    图 22  氮化铝陶瓷燃气舵断面不同位置处微观图像

    Figure 22.  Micro-morphology of different positions on section of AlN jet vane

    表  1  计算用陶瓷材料参数

    Table  1.   Parameters of ceramic materials for calculation

    材料参数 高导热氮化铝AlN 高纯氧化铝Al2O3
    E/GPa $ E=E_0-BT'{\mathrm{e}}^{- (T\mathrm{_{_m}}-273.15\; \mathrm{K}) /T'}+B_1[T'-B_2 (T_{\mathrm{m}}-273.15\; \mathrm{K}) +|T'-B_2 (T_{\mathrm{m}}-273.15\; \mathrm{K}) |]{\mathrm{e}}^{- (T_{\mathrm{m}}-273.15\; \mathrm{K}) /T'} $
    ρ/(g/cm3 3.26 3.98
    ν, B, B1, B2 0.23, 2.05, 0.975, 0.0129 0.22, 2.1441, 0.9278, 0.0352
    E0/GPa 314 400.3
    Tm/K 2785 (升华分解) 2323
    k/(W/(m∙K)) 6.812×10−5T 2−2.446T+386.22
    27.5−0.0289T (298~1 200 K)
    1.5 (1 200~2 327 K)
    cp/(J/(kg∙K))
    A1A2A3
    A1+A2×10−3T+A3×10−5T−2
    (787.00, 553.32, −192.78) (298~600 K)
    (1224.78, 28.585, −635.46) (600~1000 K)
    (1222.95, 9.49, −424.32) (1000~2000 K)
    A1+A2×10−3T+A3×10−5T−2
    (1018.15, 257.52, 285.20)(298~800 K)
    (1181.53, 97.18, −474.22) (800~2327 K)
    α1/10−6 K−1 1.68ln T − 6.3239 1.93ln T − 5.3167
    下载: 导出CSV

    表  2  陶瓷材料温度性强度参数

    Table  2.   Temperature-dependent strength parameters of ceramic materials

    材料参数 高导热氮化铝 高纯氧化铝

    σth/MPa
    ${\sigma _{{\mathrm{th}}}} = \sigma _{{\mathrm{th}}}^0{\left\{ {\displaystyle\frac{{E (T') }}{{{E_0}}}\left[ {1 - \displaystyle\frac{{\displaystyle\int_0^{T'} {{c_p} (T) {\text{d}}T} }}{{\displaystyle\int_0^{{T_{\mathrm{m}}}} {{c_p} (T) {\text{d}}T} }}} \right]} \right\}^{{1/2}}}$
    ${\sigma ^0_{{\mathrm{th}}}} $/MPa 350 350
    下载: 导出CSV

    表  3  受力峰值点处的静力学求解数据

    Table  3.   Static solution data at peak stress point

    材料 偏角/(°) 最大主应力/MPa 最大位移/μm 安全系数
    AlN 0 4.813 1.271 83.108
    20 34.687 25.62 11.532
    Al2O3 0 4.952 1.262 70.679
    20 35.103 24.81 8.468
    下载: 导出CSV

    表  4  常温下试验用陶瓷材料参数

    Table  4.   Parameters of ceramic materials for test at normal temperature

    材料参数 高导热氮化铝AlN 高纯氧化铝Al2O3
    E/GPa 320 300
    ρ/(g/cm3 3.3 3.7
    ν 0.23 0.22
    k/(W/(m∙K)) 200 24
    α1/10−6 (K−1 4.6 7.5
    σth/MPa 320 300
    下载: 导出CSV
  • [1] 刘钧圣,曾望,汤江河,等. 垂直发射多用途导弹发展现状与研究方向[J]. 弹箭与制导学报,2019,39(5): 172-177. LIU Junsheng,ZENG Wang,TANG Jianghe,et al. Development status and research trend of vertical launching multi-purpose missile[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2019,39(5): 172-177. (in Chinese

    LIU Junsheng, ZENG Wang, TANG Jianghe, et al. Development status and research trend of vertical launching multi-purpose missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 172-177. (in Chinese)
    [2] 谢玲玲,陈文亮,牛亚然,等. 燃气舵的绕流场及气动特性数值研究[J]. 航空计算技术,2015,45(6): 79-82,86. XIE Lingling,CHEN Wenliang,NIU Yaran,et al. Numerical study on flow field and aerodynamic characteristics of jet vane[J]. Aeronautical Computing Technique,2015,45(6): 79-82,86. (in Chinese

    XIE Lingling, CHEN Wenliang, NIU Yaran, et al. Numerical study on flow field and aerodynamic characteristics of jet vane[J]. Aeronautical Computing Technique, 2015, 45(6): 79-82, 86. (in Chinese)
    [3] 郑兴宇,杨涛,张青斌. 钨渗铜燃气舵化学烧蚀计算[J]. 兵器装备工程学报,2016,37(9): 166-170. ZHENG Xingyu,YANG Tao,ZHANG Qingbin. Calculation of chemical ablation of jet vane made of CIT (copper infiltrated tungsten)[J]. Journal of Ordnance Equipment Engineering,2016,37(9): 166-170. (in Chinese

    ZHENG Xingyu, YANG Tao, ZHANG Qingbin. Calculation of chemical ablation of jet vane made of CIT (copper infiltrated tungsten)[J]. Journal of Ordnance Equipment Engineering, 2016, 37(9): 166-170. (in Chinese)
    [4] 薛海峰. 碳/酚醛燃气舵传热烧蚀数值仿真与试验研究[D]. 南京: 南京理工大学,2018. XUE Haifeng. Numerical simulation and experimental studies on heat transfer and ablation of carbon-phenolic jet vanes[D]. Nanjing: Nanjing University of Science and Technology,2018. (in Chinese

    XUE Haifeng. Numerical simulation and experimental studies on heat transfer and ablation of carbon-phenolic jet vanes[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
    [5] 董晓芳. 固体火箭发动机燃气舵热分析研究[D]. 西安: 西北工业大学,2005. DONG Xiaofang. Thermal analysis of gas rudder of solid rocket motor[D]. Xi’an: Northwestern Polytechnical University,2005. (in Chinese

    DONG Xiaofang. Thermal analysis of gas rudder of solid rocket motor[D]. Xi’an: Northwestern Polytechnical University, 2005. (in Chinese)
    [6] CHEN Bo,ZHANG Litong,CHENG Laifei,et al. Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes[J]. Carbon,2009,47(6): 1474-1479. doi: 10.1016/j.carbon.2009.01.040
    [7] BANSARD S,PLOUVIER S,VARDELLE M,et al. Experimental simulation of thermo-mechanical ablation of carbon/phenolic composite under the impact of liquid alumina particles[J]. High Temperature Material Processes (an International Quarterly of High-Technology Plasma Processes),2005,9(3): 431-441. doi: 10.1615/HighTempMatProc.v9.i3.90
    [8] 薛海峰,陈雄,郑健,等. 基于热解动力学炭/酚醛燃气舵流热耦合数值研究[J]. 固体火箭技术,2015,38(4): 503-509. XUE Haifeng,CHEN Xiong,ZHENG Jian,et al. Numerical research on flow-thermal coupling of carbon-phenolic jet-vane based on pyrolysis kinetics[J]. Journal of Solid Rocket Technology,2015,38(4): 503-509. (in Chinese

    XUE Haifeng, CHEN Xiong, ZHENG Jian, et al. Numerical research on flow-thermal coupling of carbon-phenolic jet-vane based on pyrolysis kinetics[J]. Journal of Solid Rocket Technology, 2015, 38(4): 503-509. (in Chinese)
    [9] 薛海峰,陈雄,郑健,等. 炭/酚醛燃气舵烧蚀性能[J]. 固体火箭技术,2017,40(6): 706-713. XUE Haifeng,CHEN Xiong,ZHENG Jian,et al. Ablation performance of carbon-phenolic jet vanes[J]. Journal of Solid Rocket Technology,2017,40(6): 706-713. (in Chinese

    XUE Haifeng, CHEN Xiong, ZHENG Jian, et al. Ablation performance of carbon-phenolic jet vanes[J]. Journal of Solid Rocket Technology, 2017, 40(6): 706-713. (in Chinese)
    [10] 韩世纬. 舰载垂直发射导弹燃气舵材料的选择[J]. 上海航天,1986,3(4): 46-55. HAN Shiwei. Selection of gas rudder material for ship-borne vertical launch missile[J]. Aerospace Shanghai,1986,3(4): 46-55. (in Chinese

    HAN Shiwei. Selection of gas rudder material for ship-borne vertical launch missile[J]. Aerospace Shanghai, 1986, 3(4): 46-55. (in Chinese)
    [11] 严光能,邓先友,林金堵. 高导热氮化铝基板在航空工业的应用研究[J]. 印制电路信息,2017,25(10): 32-37. YAN Guangneng,DENG Xianyou,LIN Jindu. The research of high-thermal-conductive aluminum nitride substrate in airport power electronics[J]. Printed Circuit Information,2017,25(10): 32-37. (in Chinese

    YAN Guangneng, DENG Xianyou, LIN Jindu. The research of high-thermal-conductive aluminum nitride substrate in airport power electronics[J]. Printed Circuit Information, 2017, 25(10): 32-37. (in Chinese)
    [12] UPADHYA K,YANG J,HOFFMAN W. Materials for ultrahigh temperature structural applications[J]. American Ceramic Society Bulletin,1997,76: 51-56.
    [13] 刘志珩. 固体火箭燃气舵气动设计研究[J]. 导弹与航天运载技术,1995(4): 9-17. LIU Zhiheng. Study on aerodynamic design of solid rocket gas rudder[J]. Missiles and Space Vehicles,1995(4): 9-17. (in Chinese

    LIU Zhiheng. Study on aerodynamic design of solid rocket gas rudder[J]. Missiles and Space Vehicles, 1995(4): 9-17. (in Chinese)
    [14] 石仲仑,白澔烔,马天任. 一种环氧基复合推进剂、制备方法及其应用: CN112694372A[P]. 2021-04-23. SHI Zhonglun,BAI Haotong,MA Tianren. Epoxy composite propellant,preparation method and application thereof: CN112694372A[P]. 2021-04-23. (in Chinese

    SHI Zhonglun, BAI Haotong, MA Tianren. Epoxy composite propellant, preparation method and application thereof: CN112694372A[P]. 2021-04-23. (in Chinese)
    [15] ANDERSON J D. Computational fluid dynamics: the basics with applications[M]. New York: McGraw-Hill,1995.
    [16] 陈浩. 气动热弹性建模及分析方法研究[D]. 西安: 西北工业大学,2019. CHEN Hao. Research on aerothermoelastic modeling and analysis method[D]. Xi’an: Northwestern Polytechnical University,2019. (in Chinese

    CHEN Hao. Research on aerothermoelastic modeling and analysis method[D]. Xi’an: Northwestern Polytechnical University, 2019. (in Chinese)
    [17] LI Weiguo,WANG Ruzhuan,LI Dingyu,et al. A model of temperature-dependent Young’s modulus for ultrahigh temperature ceramics[J]. Physics Research International,2011,2011: 791545.
    [18] 李云凯,周张健. 陶瓷及其复合材料[M]. 北京: 北京理工大学出版社,2007. LI Yunkai,ZHOU Zhangjian. Ceramics and composites of ceramic materials[M]. Beijing: Beijing Insititute of Technology Press,2007. (in Chinese

    LI Yunkai, ZHOU Zhangjian. Ceramics and composites of ceramic materials[M]. Beijing: Beijing Insititute of Technology Press, 2007. (in Chinese)
    [19] PABST W,GREGOROVÁ E,ČERNÝ M. Isothermal and adiabatic Young’s moduli of alumina and zirconia ceramics at elevated temperatures[J]. Journal of the European Ceramic Society,2013,33(15/16): 3085-3093.
    [20] 钦征骑. 新型陶瓷材料手册[M]. 南京: 江苏科学技术出版社,1996. QIN Zhengqi. Handbook of new ceramic materials[M]. Nanjing: Phoenix Science Press,1996. (in Chinese

    QIN Zhengqi. Handbook of new ceramic materials[M]. Nanjing: Phoenix Science Press, 1996. (in Chinese)
    [21] 叶大伦,胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社,2002. YE Dalun,HU Jianhua. Handbook of practical inorganic thermodynamic data[M]. 2nd ed. Beijing: Metallurgical Industry Press,2002. (in Chinese

    YE Dalun, HU Jianhua. Handbook of practical inorganic thermodynamic data[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002. (in Chinese)
    [22] 寇海波. 金属材料温度相关性弹性模量、屈服强度及单相陶瓷抗热冲击性能研究[D]. 重庆: 重庆大学,2019. KOU Haibo. Study on temperature-dependent elastic modulus and yield strength of metallic materials and thermal shock resistance of single-phase ceramics[D]. Chongqing: Chongqing University,2019. (in Chinese

    KOU Haibo. Study on temperature-dependent elastic modulus and yield strength of metallic materials and thermal shock resistance of single-phase ceramics[D]. Chongqing: Chongqing University, 2019. (in Chinese)
    [23] LI Weiguo,YANG Fan,FANG Daining. The temperature-dependent fracture strength model for ultra-high temperature ceramics[J]. Acta Mechanica Sinica,2010,26(2): 235-239. doi: 10.1007/s10409-009-0326-7
    [24] DECHAUMPHAI P,WIETING A,THORNTON E. Flow-thermal-structural study of aerodynamically heated leading edges: AIAA 1988-2245[R]. Reston,Virigina: AIAA,1988.
    [25] 耿湘人,张涵信,沈清,等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报,2002,20(4): 422-427. GENG Xiangren,ZHANG Hanxin,SHEN Qing,et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica,2002,20(4): 422-427. (in Chinese

    GENG Xiangren, ZHANG Hanxin, SHEN Qing, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4): 422-427. (in Chinese)
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  124
  • HTML浏览量:  24
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 网络出版日期:  2024-01-24

目录

    /

    返回文章
    返回