留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式电推进系统飞/发一体化性能分析

王笑晨 陈玉春 贾琳渊

王笑晨, 陈玉春, 贾琳渊. 分布式电推进系统飞/发一体化性能分析[J]. 航空动力学报, 2024, 39(7):20210700 doi: 10.13224/j.cnki.jasp.20210700
引用本文: 王笑晨, 陈玉春, 贾琳渊. 分布式电推进系统飞/发一体化性能分析[J]. 航空动力学报, 2024, 39(7):20210700 doi: 10.13224/j.cnki.jasp.20210700
WANG Xiaochen, CHEN Yuchun, JIA Linyuan. Aircraft-engine integrated performance analysis of turbo-electric distributed propulsion[J]. Journal of Aerospace Power, 2024, 39(7):20210700 doi: 10.13224/j.cnki.jasp.20210700
Citation: WANG Xiaochen, CHEN Yuchun, JIA Linyuan. Aircraft-engine integrated performance analysis of turbo-electric distributed propulsion[J]. Journal of Aerospace Power, 2024, 39(7):20210700 doi: 10.13224/j.cnki.jasp.20210700

分布式电推进系统飞/发一体化性能分析

doi: 10.13224/j.cnki.jasp.20210700
基金项目: 航空发动机及燃气轮机重大专项基础研究项目(J2019-Ⅰ-0010-0010)
详细信息
    作者简介:

    王笑晨(1996-),男,博士生,主要从事航空发动机总体设计研究

    通讯作者:

    陈玉春(1967-),男,教授、博士生导师,博士,主要从事航空发动机总体设计研究。E-mail:chych888@nwpu.edu.cn

  • 中图分类号: V231.3

Aircraft-engine integrated performance analysis of turbo-electric distributed propulsion

  • 摘要:

    为探究涡轮-电分布式推进(turbo-electric distributed propulsion,TeDP)系统的性能方案对飞机任务油耗的影响,建立了推进系统的性能模型和飞/发一体化评估模型。以150座商用客机为例,研究了推进系统设计参数对飞机质量、油耗的影响,并分析了不同电池放电策略能够带来的收益和负面影响。结果表明:燃气涡轮发动机的涡轮前温度和电力系统的相对额定功率均存在使任务油耗最低的最优值;电池的能量应优先用于在负载端无法满载工作时提供功率补充,该放电策略在电池能量密度超过400 W∙h/kg时就能实现任务油耗的降低。本文建立的飞/发一体化设计方法可为涡轮-电分布式推进系统的综合优化设计提供参考。

     

  • 图 1  推进系统架构[17]

    Figure 1.  Structure of propulsion system[17]

    图 2  燃气涡轮发动机结构

    Figure 2.  Structure of gas turbine engine

    图 3  推进器结构

    Figure 3.  Structure of propulsor

    图 4  任务剖面

    Figure 4.  Mission profile

    图 5  Tt4πΣ对耗油率的影响

    Figure 5.  Influence of Tt4 and πΣ on fuel consumption rate

    图 6  Tt4对推进系统特性的影响(πΣ=60)

    Figure 6.  Influence of Tt4 on the performance of propulsion system (πΣ=60)

    图 7  分布式推进系统节流特性(Tt4=1700 K,πΣ=60)

    Figure 7.  Throttle performance of prorulsion system at different αcruiseTt4=1700 K,πΣ=60)

    图 8  爬升时不同设计Tt4Ps的关系(πΣ=60)

    Figure 8.  Relationship betweem Tt4 and Ps while climbing (πΣ=60)

    图 9  循环参数对巡航起点耗油率的影响

    Figure 9.  Influence of thermocycle parameters on specific fuel consumption rate at the begin of cruise

    图 10  k对推进系统特性和Ps的影响(Tt4=1700 K,πΣ=60)

    Figure 10.  Influence of k on propulsion system performance and PsTt4=1700 K,πΣ=60)

    图 11  kTt4对巡航起点耗油率的影响(πΣ=60)

    Figure 11.  Influence of k and Tt4 on fuel consumption rate at the begin of cruise (πΣ=60)

    图 12  Tt4k对飞机质量的影响

    Figure 12.  Influence of k and Tt4 on aircraft mass

    图 13  不同放电策略下推进器的功率示意

    Figure 13.  Propulsor power at different energy supplementation strategies

    图 14  不同放电策略对比(Tt4=1700 K,πΣ=60,k=1.6)

    Figure 14.  Comparation of different energy manage strategies (Tt4=1700K,πΣ=60,k=1.6)

    图 15  电池能量密度的影响(Tt4=1700 K,πΣ=60,k=1.6,无偏移)

    Figure 15.  Influence of battery energy density(Tt4=1700 K,πΣ=60,k=1.6,No Bias)

    图 16  改进后的高空偏移策略示例

    Figure 16.  Modified high altitude bias strategy

    图 17  电池能量密度的影响(改进后的放电策略)

    Figure 17.  Influence of battery energy density (modified high altitude bias strategy)

    表  1  各部件自变量及残差方程

    Table  1.   Parameters and residual equations of components

    子系统 部件 自变量 残差方程
    燃气涡轮
    发动机
    低压压气机 nlzl
    高压压气机 nhzh y1 = W2W25
    燃烧室 T4
    高压涡轮 Wth,cor y2 = W25W4
    y3 = PthPch
    低压涡轮 Wtl,cor y4 = W4W25
    y5 = PtlPcl
    自由涡轮 Wtf,corntf y6 = W45W5
    喷管 y7 = W5W9
    电池 Hp
    推进器 推进风扇 nf, zf y8 = Pfan(1−Hp)−Pcoreηe
    喷管 Y9 = W23DW9D
    下载: 导出CSV

    表  2  分布式推进系统模型验证

    Table  2.   Model verification of distributed propulsion system

    验证参数 h=0 m, Ma=0 h=9144 m, Ma=0.84(设计点) h=12192 m, Ma=0.84
    本文 NASA 误差/% 本文 NASA 误差/% 本文 NASA 误差/%
    涡轮发动机流量/(kg/s) 90.22 89.05 1.30 46.99 46.96 0.07 30.16 29.78 1.25
    涡/发动机功率/MW 54.62 54.00 1.14 27.51 27.62 −0.4 16.69 16.66 0.18
    推进器流量/(kg/s) 2605.89 2636.451 −1.17 1264.62 1267.89 −0.26 809.66 811.16 −0.18
    推力/kN 552.10 551.45 0.12 119.03 118.08 0.8 74.11 73.07 1.41
    耗油率/(kg/(kgf·h)) 16.49 16.21 1.73 36.95 36.93 0.06 35.68 35.76 −0.23
    下载: 导出CSV

    表  3  飞/发匹配模型验证

    Table  3.   Verification of aircraft-engine matching model

    验证参数 ECO-150-300 本文 误差/% 本文(燃油质量修正) 误差(燃油质量修正)/%
    总重/kg 63324.2 57989.77 −8.42 64191.91 1.37
    任务油耗/kg 11437.3 10461.38 −8.53 11580.24 1.25
    燃油容量/kg 13107.9 10461.38 −20.19 13270.96 1.24
    载荷容量/kg 13970.6 13970.6 0 13970.6 0
    下载: 导出CSV

    表  4  飞行器及电力系统参数

    Table  4.   Parameters of aircrafts and electrical system

    参数 数值
    阻力极曲线 $ {C_{\text{d}}} = 0.081\;2C_{\text{l}}^2 - 0.021{C_{\text{l}}} + 0.014\;5 $
    空重比 $ \varGamma = 1.02W_{{\text{to}}}^{ - 0.06} $
    翼载荷/(N/m2 6000
    任务载荷/kg 18000
    电力系统传输效率/% 93
    源端功率密度/(kW/kg) 8.853
    负载端功率密度/(kW/kg) 8.14
    下载: 导出CSV
  • [1] GOHARDANI A S,DOULGERIS G,SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences,2011,47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001
    [2] FELDER J,KIM H,BROWN G,et al. An examination of the effect of boundary layer ingestion on turbo-electric distributed propulsion systems[C]// 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA,2011: 300-326.
    [3] FELDER J,BROWN G,DAEKIM H,et al. Turboelectric distributed propulsion in a hybrid wing body aircraft[C]// 20th International Society for Airbreathing Engines. Gothenburg: ISABE,2011: 1340-1360.
    [4] WICK A T,HOOKER J R,ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston,Virginia: AIAA,2015: 1500-1536.
    [5] DANIS R A,FREEMAN J L,SCHILTGCN B T. Applications for hybrid electric power and energy supplementation on a single-aisle airliner[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway,US: IEEE,2018: 5021-5040.
    [6] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报,2021,42(3): 624037. HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624037. (in Chinese

    HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037. (in Chinese)
    [7] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 021651. KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 021651. (in Chinese

    KONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651. (in Chinese)
    [8] 廖忠权. 航空混合电推进系统发展研究[J]. 航空动力,2018(2): 45-50. LIAO Zhongquan. Research on the development of hybrid electric propulsion system[J]. Aerospace Power,2018(2): 45-50. (in Chinese

    LIAO Zhongquan. Research on the development of hybrid electric propulsion system[J]. Aerospace Power, 2018(2): 45-50. (in Chinese)
    [9] MATTINGLY J D,HEISER W H,PRATT D T. Aircraft engine design,second edition[M]. Reston,US: AIAA,2002.
    [10] 胡军,张津. 旅客机/涡扇发动机设计参数一体化选择研究[J]. 北京航空航天大学学报,1996,22(2): 183-188. HU Jun,ZHANG Jin. Study on integrated selection of design parameters of passenger aircraft/turbofan engine[J]. Journal of Beijing University of Aeronautics and Astronautics,1996,22(2): 183-188. (in Chinese

    HU Jun, ZHANG Jin. Study on integrated selection of design parameters of passenger aircraft/turbofan engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(2): 183-188. (in Chinese)
    [11] GKOUTZAMANIS V G,SRINIVAS A,MAVROUDI D,et al. Conceptual design and energy storage positioning aspects for a hybrid-electric light aircraft[R]. ASME Paper GT2020-15477,2020.
    [12] 李也. 通用飞机混合电推进系统方案设计及性能分析[D]. 北京: 清华大学,2019. LI Ye. Design and performance analysis of general aircraft hybrid electric propulsion system[D]. Beijing: Tsinghua University,2019. (in Chinese

    LI Ye. Design and performance analysis of general aircraft hybrid electric propulsion system[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [13] PALAIA G,ZANETTI D,ABU SALEM K,et al. THEA-CODE: a design tool for the conceptual design of hybrid-electric aircraft with conventional or unconventional airframe configurations[J]. Mechanics and Industry,2021,22: 19. doi: 10.1051/meca/2021012
    [14] RUSCIO J P,JEZEGOU J,BENARD E,et al. Hybrid electric distributed propulsion overall aircraft design process and models for general aviation (FAST GA)[J]. IOP Conference Series: Materials Science and Engineering,2021,1024: 012072 doi: 10.1088/1757-899X/1024/1/012072
    [15] BRAVO G M,PRALIYEV N,VERESS Á. Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft[J]. Energy,2021,214: 118823. doi: 10.1016/j.energy.2020.118823
    [16] 雷涛,孔德林,王润龙,等. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报,2021,42(6): 624047. LEI Tao,KONG Delin,WANG Runlong,et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 624047. (in Chinese

    LEI Tao, KONG Delin, WANG Runlong, et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624047. (in Chinese)
    [17] SCHILTGEN B T,FREEMAN J. ECO-150-300 design and performance: a tube-and-wing distributed electric propulsion airliner[C]// AIAA Scitech 2019 Forum. San Diego: AIAA,2015: 1808-1823.
    [18] 廉筱纯,吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社,2005. LIAN Xiaochun,WU Hu. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press,2005. (in Chinese

    LIAN Xiaochun, WU Hu. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press, 2005. (in Chinese)
    [19] 卜贤坤,邵伏永. 高空长航时无人机/涡扇发动机的飞发一体化分析[J]. 战术导弹技术,2016(3): 65-70,88. BU Xiankun,SHAO Fuyong. High altitude long endurance unmanned air vehicle and turbofan engine integrated design[J]. Tactical Missile Technology,2016(3): 65-70,88. (in Chinese

    BU Xiankun, SHAO Fuyong. High altitude long endurance unmanned air vehicle and turbofan engine integrated design[J]. Tactical Missile Technology, 2016(3): 65-70, 88. (in Chinese)
    [20] BRADLEY M K,DRONEY C K. Subsonic ultra green aircraft research: phase I final report[M]. Langley: National Aeronautics and Space Administration,2011.
    [21] 余若璇. 民用飞机标准爬升剖面性能计算[J]. 科技视界,2016(17): 73,75. YU Ruoxuan. Performance calculation of standard climb profile of civil aircraft[J]. Science & Technology Vision,2016(17): 73,75. (in Chinese

    YU Ruoxuan. Performance calculation of standard climb profile of civil aircraft[J]. Science & Technology Vision, 2016(17): 73, 75. (in Chinese)
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  68
  • HTML浏览量:  26
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 网络出版日期:  2024-02-27

目录

    /

    返回文章
    返回