留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油气匹配对燃烧室不稳定性的影响

邢力 郑明新 黎武 徐华胜 梁勇 李银怀 周雄

邢力,郑明新,黎武,等.油气匹配对燃烧室不稳定性的影响[J].航空动力学报,2022,37(7):1352‑1362. doi: 10.13224/j.cnki.jasp.20210701
引用本文: 邢力,郑明新,黎武,等.油气匹配对燃烧室不稳定性的影响[J].航空动力学报,2022,37(7):1352‑1362. doi: 10.13224/j.cnki.jasp.20210701
XING Li,ZHENG Mingxin,LI Wu,et al.Effect of oil⁃gas matching on combustor instability[J].Journal of Aerospace Power,2022,37(7):1352‑1362. doi: 10.13224/j.cnki.jasp.20210701
Citation: XING Li,ZHENG Mingxin,LI Wu,et al.Effect of oil⁃gas matching on combustor instability[J].Journal of Aerospace Power,2022,37(7):1352‑1362. doi: 10.13224/j.cnki.jasp.20210701

油气匹配对燃烧室不稳定性的影响

doi: 10.13224/j.cnki.jasp.20210701
基金项目: 

重大研究计划 91841302

详细信息
    作者简介:

    邢力(1991-),男,工程师,硕士,主要从事航空发动机主燃烧室设计。

  • 中图分类号: V231.2

Effect of oil⁃gas matching on combustor instability

  • 摘要:

    为抑制全环燃烧室在加温加压条件下的高幅度脉动,研究了燃烧室高幅脉动产生机理和油气匹配对燃烧不稳定的影响,结果表明:实验捕捉到了脉动增大的过程,主频为40 Hz的低频脉动,并产生了倍频,压力脉动引起火焰筒壁温发生了2%的波动,造成了燃烧不稳定;仿真计算发现随着燃烧室进口参数的提高及主油路开启导致的雾化变差会使得压力脉动的频率降低,脉动量升高44%;燃烧室进口压力、温度相对基准工况分别降低15%和30%(工况1)或者提高10%和26%(工况6)时可抑制脉动;增加主油路开始工作附近工况的主油路燃油占比后,脉动量总体有较大的减小;抑制脉动的最佳主副油路分配方案为Case3,相对基准方案提高工况2~工况6主油路燃油占比4%时可消除不稳定燃烧;主油路占比在超过一定值,又会使得脉动量升高。

     

  • 图 1  实验平台

    Figure 1.  Experimental platform

    图 2  燃烧室实验件

    Figure 2.  Experimental element of combustor

    图 3  仿真计算网格

    Figure 3.  Simulation mesh

    图 4  网格无关性验证

    Figure 4.  Verification of mesh independence

    图 5  X3位置压力实测值

    Figure 5.  Pressure directly measured value of X3

    图 6  火焰筒壁温

    Figure 6.  Temperature of liner

    图 8  X1X2相关性

    Figure 8.  Cross correlation of X1 and X2

    图 9  X2X3相关性

    Figure 9.  Cross correlation of X2 and X3

    图 10  X1X3相关性

    Figure 10.  Cross correlation of X1 and X3

    图 11  静压云图

    Figure 11.  Static pressure satellite picture

    图 12  非稳态燃烧室仿真压力脉动频域图

    Figure 12.  Pulse⁃frequency plots of pressure pulsation of unsteady simulation

    图 13  基准方案脉动量

    Figure 13.  Reference scheme pulsation

    图 14  工况3和5的频域图

    Figure 14.  Pulse⁃frequency plots of conditions 3 and 5

    图 15  不同方案脉动量对比

    Figure 15.  Comparison of pulsation of different schemes

    图 16  Case3的脉动频域图

    Figure 16.  Pulse⁃frequency plots of Case3

    图 17  Case3的壁温测量值

    Figure 17.  Liner temperature of Case3

    表  1  实验工况

    Table  1.   Experimental conditions

    工况进口温度/K进口压力/kPa油气比
    10.85T0.7p0.64α
    20.9T0.8p0.75α
    30.95T0.96p0.88α
    4(基准工况)Tpα
    51.05T1.1p1.12α
    61.1T1.2p1.26α
    下载: 导出CSV

    表  2  不同的主油路燃油占比实验方案

    Table  2.   Experimental scheme of different primary oil distribution ratio

    方案主油路燃油占比/%
    工况1工况2工况3工况4工况5工况6
    Case1(基准)05791216
    Case2079111418
    Case30911131620
    Case401214151822
    下载: 导出CSV
  • [1] CHU B T.On the energy transfer to small disturbances in fluid flow:Part Ⅰ[J].Acta Mechanica,1964,1(3):215⁃234.
    [2] MCMANUS K R,POINSOT T,CANDEL S M.A review of active control of combustion instabilities[J].Progress in Energy and Combustion Science,1993,19:1⁃29.
    [3] ZHAO Dan,LU Zhengli,ZHAO He,et al.A review of active control approaches in stabilizing combustion systems in aerospace industry[J].Progress in Aerospace Sciences,2018,47(3):35⁃60.
    [4] ZHAO Dan,MORGANS A S.Tuned passive control of combustion instabilities using multiple Helmholtz resonators[J].Journal of Sound & Vibration,2009,320(4/5):744⁃757.
    [5] TOMAS S,CHRISTOPHER F,IVOR D.Passive control of combustion instability in a low emissions aeroderivative gas turbine[R].ASME Paper GT2004⁃53767,2004.
    [6] GHANI A,POINSOT T,GICQUEL L,et al.LES of longitudinal and transverse self⁃excited combustion instabilities in a bluff⁃body stabilized turbulent premixed flame[J].Combustion and Flame,2015,162:4075⁃4083.
    [7] GHANI A,STEINBACHER T,ALBAYRAK A,et al.Intrinsic thermo‑acoustic feedback loop in turbulent spray flames[J].Combustion and Flame,2019,205:22⁃32.
    [8] 欧阳浩.超燃冲压发动机燃烧室中的非稳态燃烧过程研究[D].长沙:国防科技大学,2018.

    OUYANG Hao.Study on unsteady combustion process in scramjet combustor[D].Changsha:National University of defense technology,2018.(in Chinese)
    [9] ACHARYA V,SHREEKRISHNA,SHIN D H,et al.Swirl effects on harmonically excited,premixed flame kinematics[J].Combustion and Flame,2012,159(3):1139⁃1150.
    [10] MOECK J P,BOURGOUIN J F,DUROX D,et al.Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame[J].Combustion and Flame,2012,159:2650⁃2668.
    [11] HERMETH S,STAFFELBACH G,GICQUEL L Y M,et al.LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber[J].Proceedings of the Combustion Institute,2013,34(2):3165⁃3173.
    [12] STEINBERG A M,BOXX I,STÖHR M,et al.Flow‑flame interactions causing acoustically coupled heat release fluctuations in a thermo‑acoustically unstable gas turbine model combustor[J].Combustion and Flame,2010,157(12):2250⁃2266.
    [13] STEINBERG A M,ARNDT C M,MEIER W.Parametric study of vortex structures and their dynamics in swirl⁃stabilized combustion[J].Proceedings of the Combustion Institute,2013,34:3117⁃3125.
    [14] 王振林,李祥晟,庄士超,等.旋进涡核与火焰面耦合作用对燃烧稳定性影响的数值研究[J].西安交通大学学报,2018,52(7):60⁃67.

    WANG Zhenlin,LI Xiangsheng,ZHUANG Shichao,et al.Numerical study on the effect of the coupling of precession vortex core and flame surface on combustion stability[J].Journal of Xi'an Jiaotong University,2018,52(7):60⁃67.(in Chinese)
    [15] 郑丹伟,刘勇,张祥.基于火焰图像诊断的模型燃烧室燃烧不稳定特性[J].航空动力学报,2021,36(7):1481⁃1488.

    ZHENG Danwei,LIU Yong,ZHANG Xiang.Combustion instability characteristics of model combustion chamber based on flame image diagnosis[J].Journal of Aerospace Power,2021,36(7):1481⁃1488.(in Chinese)
    [16] 王玮,肖俊峰,高松,等.空燃比对燃气轮机燃烧室燃烧不稳定性影响的数值研究[J].燃烧科学与技术,2019,25(5):439‑444.

    WANG Wei,XIAO Junfeng,GAO Song,et al.Numerical study on the effect of air⁃fuel ratio on combustion instability in gas turbine combustor[J].Combustion science and technology,2019,25(5):439⁃444.(in Chinese)
    [17] KIM K T,HOCHGREB S.The nonlinear heat release response of stratified lean⁃premixed flames to acoustic velocity oscillations[J].Combustion and Flame,2011,158(12):2482⁃2499.
    [18] KIM K T,HOCHGREB S.Effects of nonuniform reactant stoichiometry on thermoacoustic instability in a lean‑premixed gas turbine combustor[J].Combustion Science and Technology,2012,184(5):608⁃628.
    [19] KIM K T,SANTAVICCA D A.Interference mechanisms of acoustic/convective disturbances in a swirl⁃stabilized lean⁃premixed combustor[J].Combustion and Flame,2013,160:1441⁃1457.
    [20] HAN X,LAERA D,MORGANS A S,et al.Flame macrostructures and thermoacoustic instabilities in stratified swirling flames[J].Proceedings of the Combustion Institute,2019,37:5377⁃5384.
    [21] HAN X,LAERA D,YANG D,et al.Flame interactions in a stratified swirl burner:flame stabilization,combustion instabilities and beating oscillations[J].Combustion and Flame,2020,212:500⁃509.
    [22] 许晓勇,刘红珍.赫姆霍兹声腔学特性实验研究[J].火箭推进,2016,42(3):68⁃75.

    XU Xiaoyong,LIU Hongzhen.Experimental study on the acoustic characteristics of Helmholtz cavity[J].Rocket propulsion,2016,42(3):68⁃75.(in Chinese)
    [23] 刘韬,李银怀.航空发动机燃烧室部件试验件结构设计[J].燃气涡轮试验与研究,2010,23(4):49⁃52.

    LIU Tao,LI Yinhuai.Structural design of aeroengine combustion chamber component test piece[J].Gas turbine test and research,2010,23(4):49⁃52.(in Chinese)
    [24] LIEWEN T C,YANG V.Combustion instabilities in gas turbine engines:operational experience,fundamental mechanisms,and modeling[M].Reston,US:AIAA,2005.
    [25] MILES J H.Core noise diagnostics of turbofan engine noise using correlation and coherence functions[J].Journal of Propulsion & Power,2010,26(2):303⁃316.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  85
  • HTML浏览量:  6
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10

目录

    /

    返回文章
    返回