留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶涡轮叶片典型任务循环蠕变分析

石多奇 张雨曼 隋天校 杨晓光

石多奇, 张雨曼, 隋天校, 等. 单晶涡轮叶片典型任务循环蠕变分析[J]. 航空动力学报, 2024, 39(6):20210702 doi: 10.13224/j.cnki.jasp.20210702
引用本文: 石多奇, 张雨曼, 隋天校, 等. 单晶涡轮叶片典型任务循环蠕变分析[J]. 航空动力学报, 2024, 39(6):20210702 doi: 10.13224/j.cnki.jasp.20210702
SHI Duoqi, ZHANG Yuman, SUI Tianxiao, et al. Creep analysis of single crystal turbine blade under typical mission cycle[J]. Journal of Aerospace Power, 2024, 39(6):20210702 doi: 10.13224/j.cnki.jasp.20210702
Citation: SHI Duoqi, ZHANG Yuman, SUI Tianxiao, et al. Creep analysis of single crystal turbine blade under typical mission cycle[J]. Journal of Aerospace Power, 2024, 39(6):20210702 doi: 10.13224/j.cnki.jasp.20210702

单晶涡轮叶片典型任务循环蠕变分析

doi: 10.13224/j.cnki.jasp.20210702
基金项目: 国家科技重大专项(2017-Ⅳ-0012-0049)
详细信息
    作者简介:

    石多奇(1975-),男,教授,博士,研究方向为航空发动机结构强度与寿命可靠性、高温材料本构关系与破坏理论

  • 中图分类号: V232.4

Creep analysis of single crystal turbine blade under typical mission cycle

  • 摘要:

    针对单晶涡轮叶片在发动机典型任务循环下的多工况蠕变计算问题,结合变载条件下的单晶合金蠕变本构模型,开发了用于高温结构蠕变计算的ABAQUS/UMAT用户子程序。对某型单晶涡轮叶片进行了典型任务循环下的蠕变计算,识别出可忽略蠕变损伤的工作状态从而实现了载荷谱简化,分别计算了该涡轮叶片在10000个战斗机飞行循环和40000个运输机飞行循环下的蠕变变形,并进行了蠕变寿命评估。结果显示:计算采用的典型载荷状态中,该叶片在巡航及以下状态产生的损伤较小,进行蠕变计算时可以删除,简化后的蠕变载荷谱与原载荷谱下叶片产生的蠕变变形基本相等;不同飞机任务剖面下涡轮叶片具有不同的蠕变寿命,在采用的战斗机典型飞行循环下,该叶片的蠕变寿命约为运输机飞行循环下的1/14,这与发动机的大功率状态持续时间占比有关。

     

  • 图 1  变载蠕变规则

    Figure 1.  Creep rule under varying load

    图 2  UMAT子程序流程图

    Figure 2.  Flow chart of UMAT subroutine

    图 3  涡轮叶片有限元模型、最大状态温度场与边界条件

    Figure 3.  Finite element model, maximum state temperature field and boundary conditions of turbine blade

    图 4  民用发动机典型设计载荷谱[21]

    Figure 4.  Typical design load spectrum of a civil engine[21]

    图 5  涡轮叶片等效蠕变应变分布(N=500)

    Figure 5.  Equivalent creep strain distribution of turbine blade(N = 500)

    图 6  涡轮叶片蠕变损伤分布(N=500)

    Figure 6.  Creep damage distribution of turbine blade (N=500)

    图 7  不同循环最大状态下涡轮叶片等效应力分布

    Figure 7.  Equivalent stress distribution of turbine blade under maximum state of different cycles

    图 8  Hill等效应力变化曲线

    Figure 8.  Variation curve of Hill equivalent stress

    图 9  叶尖截面蠕变伸长量随循环数的变化曲线

    Figure 9.  Variation curve of tip section creep elongation with cycle

    图 10  各载荷状态占比情况

    Figure 10.  Proportion of each load state

    图 11  简化蠕变载荷谱

    Figure 11.  Simplified creep load spectrum

    图 12  叶尖最大径向位移量随循环数的变化曲线

    Figure 12.  Variation curve of maximum radial displacement of blade tip with cycle

    图 13  不同机型发动机的简化蠕变载荷谱

    Figure 13.  Simplified creep load spectrums of different aircraft engines

    图 14  涡轮叶片最大蠕变伸长量随循环数的变化曲线

    Figure 14.  Variation curve of maximum creep elongation of turbine blade with cycle

    表  1  国产某单晶高温合金DDXX蠕变模型参数

    Table  1.   Creep model parameters of a domestic single crystal superalloy DDXX

    T/K A/10−15 m n B k r M44
    1033 8.52 4.92 0.3339 1320 3.02 13.5 2.51
    1173 34.4 4.64 0.6550 1160 2.32 6.8 2.38
    1273 310 4.46 0.8851 717 2.02 5.9 1.85
    下载: 导出CSV

    表  2  某战斗机典型任务剖面[22]

    Table  2.   Typical mission profile of a fighter[22]

    任务段发动机状态持续时间/min占任务总时间比/%
    滑行地面慢车0.20.57
    起飞最大12.83
    爬升额定4.7913.57
    出航巡航3.419.66
    机动最大6.2917.82
    巡航巡航8.7824.87
    下降空中慢车10.2328.98
    着陆最大0.10.28
    滑行地面慢车0.51.42
    下载: 导出CSV

    表  3  某运输机典型任务剖面[22]

    Table  3.   Typical mission profile of a transport aircraft[22]

    任务段发动机状态持续时间/min占任务总时间比/%
    滑行地面慢车0.20.20
    起飞最大10.98
    爬升额定24.223.77
    巡航巡航53.752.75
    下降空中慢车22.121.71
    着陆最大0.10.10
    滑行地面慢车0.50.49
    下载: 导出CSV

    表  4  涡轮叶片蠕变寿命

    Table  4.   Creep life of turbine blade

    飞机类型战斗机运输机
    飞行循环数247213431
    飞行小时数/h159923573
    下载: 导出CSV
  • [1] 《航空涡喷、涡扇发动机结构设计准则(研究报告)》编委会. 航空涡喷、涡扇发动机结构设计准则(研究报告)第三册 叶片[M]. 北京: 中国航空工业总公司发动机系统工程局,1997. Editorial board of structural design criteria for aviation turbojet and turbofan engines (Research Report). Structural design criteria for aviation turbojet and turbofan engines (Research Report),volume 3,blades[M]. Beijing: Engine System Engineering Bureau of China Aviation Industry Corporation,1997. (in Chinese

    Editorial board of structural design criteria for aviation turbojet and turbofan engines (Research Report). Structural design criteria for aviation turbojet and turbofan engines (Research Report), volume 3, blades[M]. Beijing: Engine System Engineering Bureau of China Aviation Industry Corporation, 1997. (in Chinese)
    [2] 苏清友. 航空涡喷、涡扇发动机主要零部件定寿指南[M]. 北京: 航空工业出版社,2004. SU Qingyou. Guide for life determination of main components of aviation turbojet and turbofan engines[M]. Beijing: Aviation Industry Press,2004. (in Chinese

    SU Qingyou. Guide for life determination of main components of aviation turbojet and turbofan engines[M]. Beijing: Aviation Industry Press, 2004. (in Chinese)
    [3] ESHATI S,ABDUL GHAFIR M F,LASKARIDIS P,et al. Impact of operating conditions and design parameters on gas turbine hot section creep life[R]. ASME GT-2010-22334,2010.
    [4] 李娜,杨晓光,石多奇,等. 服役工作条件对涡轮转子叶片蠕变寿命的影响[J]. 航空动力学报,2015,30(12): 2870-2875. LI Na,YANG Xiaoguang,SHI Duoqi,et al. Effect of operating conditions on turbine rotor blade creep life[J]. Journal of Aerospace Power,2015,30(12): 2870-2875. (in Chinese

    LI Na, YANG Xiaoguang, SHI Duoqi, et al. Effect of operating conditions on turbine rotor blade creep life[J]. Journal of Aerospace Power, 2015, 30(12): 2870-2875. (in Chinese)
    [5] 李锦红,张勇,张如刚,等. 基于梁理论的涡轮冷却叶片蠕变计算[J]. 燃气涡轮试验与研究,2019,32(3): 42-46. LI Jinhong,ZHANG Yong,ZHANG Rugang,et al. Creep calculation of turbine cooling blade based on the beam theory[J]. Gas Turbine Experiment and Research,2019,32(3): 42-46. (in Chinese doi: 10.3969/j.issn.1672-2620.2019.03.008

    LI Jinhong, ZHANG Yong, ZHANG Rugang, et al. Creep calculation of turbine cooling blade based on the beam theory[J]. Gas Turbine Experiment and Research, 2019, 32(3): 42-46. (in Chinese) doi: 10.3969/j.issn.1672-2620.2019.03.008
    [6] 胡锦文,成晓鸣,董斌,等. 基于等效等时应力应变曲线的金属材料多工况蠕变分析[J]. 推进技术,2018,39(5): 1105-1110. HU Jinwen,CHENG Xiaoming,DONG Bin,et al. Creep analysis of metal materials under multiple loading cases based on equivalent isochronous stress-strain curve[J]. Journal of Propulsion Technology,2018,39(5): 1105-1110. (in Chinese

    HU Jinwen, CHENG Xiaoming, DONG Bin, et al. Creep analysis of metal materials under multiple loading cases based on equivalent isochronous stress-strain curve[J]. Journal of Propulsion Technology, 2018, 39(5): 1105-1110. (in Chinese)
    [7] 饶寿期. 航空发动机的高温蠕变分析[J]. 航空发动机,2004,30(1): 10-13. RAO Shouqi. Analysis of high-temperature creep of aeroengines[J]. Aeroengine,2004,30(1): 10-13. (in Chinese doi: 10.3969/j.issn.1672-3147.2004.01.003

    RAO Shouqi. Analysis of high-temperature creep of aeroengines[J]. Aeroengine, 2004, 30(1): 10-13. (in Chinese) doi: 10.3969/j.issn.1672-3147.2004.01.003
    [8] 张克实,杨士杰,周柏卓. 定向凝固涡轮叶片的晶体热粘塑性变形与损伤分析[J]. 航空动力学报,2004,19(6): 762-770. ZHANG Keshi,YANG Shijie,ZHOU Baizhuo. Crystalline thermo visco-plastic deformation and damage of directionally solidified turbine blade[J]. Journal of Aerospace Power,2004,19(6): 762-770. (in Chinese doi: 10.3969/j.issn.1000-8055.2004.06.005

    ZHANG Keshi, YANG Shijie, ZHOU Baizhuo. Crystalline thermo visco-plastic deformation and damage of directionally solidified turbine blade[J]. Journal of Aerospace Power, 2004, 19(6): 762-770. (in Chinese) doi: 10.3969/j.issn.1000-8055.2004.06.005
    [9] WANG Chan,SHI Duoqi,YANG Xiaoguang,et al. An improved viscoplastic constitutive model and its application to creep behavior of turbine blade[J]. Materials Science and Engineering: A,2017,707: 344-355. doi: 10.1016/j.msea.2017.09.067
    [10] MATAN N,COX D C,CARTER P,et al. Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature[J]. Acta Materialia,1999,47(5): 1549-1563. doi: 10.1016/S1359-6454(99)00029-4
    [11] EVANS R W,WILSHIRE B. Creep of metals and alloys[M]. London: Institute of Metals,1985.
    [12] RABOTNOV Y N,LECKIE F A,PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics,1970,37(1): 249-260.
    [13] 石多奇,杨晓光. 时间硬化蠕变本构方程耦合损伤的应用研究[J]. 航空动力学报,2004,19(1): 12-16. SHI Duoqi,YANG Xiaoguang. Application of the time-hardening creep law coupling damage[J]. Journal of Aerospace Power,2004,19(1): 12-16. (in Chinese doi: 10.3969/j.issn.1000-8055.2004.01.003

    SHI Duoqi, YANG Xiaoguang. Application of the time-hardening creep law coupling damage[J]. Journal of Aerospace Power, 2004, 19(1): 12-16. (in Chinese) doi: 10.3969/j.issn.1000-8055.2004.01.003
    [14] 石多奇,杨晓光,王延荣. 耦合蠕变损伤的Chaboche粘塑性本构方程的应用[J]. 航空动力学报,2005,20(1): 60-65. SHI Duoqi,YANG Xiaoguang,WANG Yanrong. Applied investigation of chaboche’s unified visco-plastic constitutive model of coupled creep damage[J]. Journal of Aerospace Power,2005,20(1): 60-65. (in Chinese doi: 10.3969/j.issn.1000-8055.2005.01.012

    SHI Duoqi, YANG Xiaoguang, WANG Yanrong. Applied investigation of chaboche’s unified visco-plastic constitutive model of coupled creep damage[J]. Journal of Aerospace Power, 2005, 20(1): 60-65. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.01.012
    [15] GOLDHOFF R M. Uniaxial creep-rupture behavior of low-alloy steel under variable loading conditions[J]. Journal of Basic Engineering,1965,87(2): 374-378. doi: 10.1115/1.3650556
    [16] ABO EL ATA M M,FINNIE I. A study of creep damage rules[J]. Journal of Basic Engineering,1972,94(3): 533-541. doi: 10.1115/1.3425474
    [17] PAVLOU D G. Creep life prediction under stepwise constant uniaxial stress and temperature conditions[J]. Engineering Structures,2001,23(6): 656-662. doi: 10.1016/S0141-0296(00)00081-X
    [18] BATSOULAS N D. Creep damage assessment and lifetime predictions for metallic materials under variable loading conditions in elevated temperature applications[J]. Steel Research International,2009,80(2): 152-159.
    [19] 张雨曼,石多奇,隋天校,等. 变载条件下镍基单晶合金蠕变本构建模方法[J]. 推进技术,2022,43(2): 35-42. ZHANG Yuman,SHI Duoqi,SUI Tianxiao,et al. Creep constitutive modeling of nickel-base single crystal superalloy under varying loading[J]. Journal of Propulsion Technology,2022,43(2): 35-42. (in Chinese

    ZHANG Yuman, SHI Duoqi, SUI Tianxiao, et al. Creep constitutive modeling of nickel-base single crystal superalloy under varying loading[J]. Journal of Propulsion Technology, 2022, 43(2): 35-42. (in Chinese)
    [20] 吴鸿遥. 损伤力学[M]. 北京: 国防工业出版社,1990. WU Hongyao. Damage mechanics[M]. Beijing: National Defense Industry Press,1990. (in Chinese

    WU Hongyao. Damage mechanics[M]. Beijing: National Defense Industry Press, 1990. (in Chinese)
    [21] 付娜. 某航空发动机涡轮盘和叶片的强度分析与寿命计算[D]. 西安: 西北工业大学,2006. FU Na. Strength analysis and life calculation of turbine disk and blade of an aero-engine[D]. Xi’an: Northwestern Polytechnical University,2006. (in Chinese

    FU Na. Strength analysis and life calculation of turbine disk and blade of an aero-engine[D]. Xi’an: Northwestern Polytechnical University, 2006. (in Chinese)
    [22] 蒋祖国,田丁栓,周占廷. 飞机结构载荷/环境谱[M]. 北京: 电子工业出版社,2012. JIANG Zuguo,TIAN Dingshuan,ZHOU Zhanting. Aircraft structural load/environment spectrum[M]. Beijing: Publishing House of Electronics Industry,2012. (in Chinese

    JIANG Zuguo, TIAN Dingshuan, ZHOU Zhanting. Aircraft structural load/environment spectrum[M]. Beijing: Publishing House of Electronics Industry, 2012. (in Chinese)
    [23] 常敏,马蕾,于萍. 某发动机高压涡轮工作叶片故障与典型修理技术[J]. 航空制造技术,2009,52(18): 46-50. CHANG Min,MA Lei,YU Ping. High pressure turbine blade fault and typical repair technology of one engine[J]. Aeronautical Manufacturing Technology,2009,52(18): 46-50. (in Chinese doi: 10.3969/j.issn.1671-833X.2009.18.006

    CHANG Min, MA Lei, YU Ping. High pressure turbine blade fault and typical repair technology of one engine[J]. Aeronautical Manufacturing Technology, 2009, 52(18): 46-50. (in Chinese) doi: 10.3969/j.issn.1671-833X.2009.18.006
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  239
  • HTML浏览量:  23
  • PDF量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 网络出版日期:  2024-01-25

目录

    /

    返回文章
    返回