留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同油槽结构挤压油膜阻尼器动力学特性试验

黄延忠 张广辉 马会防 陈亚龙 龚文杰

黄延忠, 张广辉, 马会防, 等. 不同油槽结构挤压油膜阻尼器动力学特性试验[J]. 航空动力学报, 2024, 39(6):20210705 doi: 10.13224/j.cnki.jasp.20210705
引用本文: 黄延忠, 张广辉, 马会防, 等. 不同油槽结构挤压油膜阻尼器动力学特性试验[J]. 航空动力学报, 2024, 39(6):20210705 doi: 10.13224/j.cnki.jasp.20210705
HUANG Yanzhong, ZHANG Guanghui, MA Huifang, et al. Experiment on dynamic characteristics of squeeze film damper with different groove[J]. Journal of Aerospace Power, 2024, 39(6):20210705 doi: 10.13224/j.cnki.jasp.20210705
Citation: HUANG Yanzhong, ZHANG Guanghui, MA Huifang, et al. Experiment on dynamic characteristics of squeeze film damper with different groove[J]. Journal of Aerospace Power, 2024, 39(6):20210705 doi: 10.13224/j.cnki.jasp.20210705

不同油槽结构挤压油膜阻尼器动力学特性试验

doi: 10.13224/j.cnki.jasp.20210705
基金项目: 国家自然科学基金(11572098); 国家科技重大专项基础研究(2017-Ⅳ-0008-0045)
详细信息
    作者简介:

    黄延忠(1995-),男,博士生,主要从事航空发动机挤压油膜阻尼器理论及试验研究

    通讯作者:

    张广辉(1981-),男,教授,博士,主要从事薄膜润滑、摩擦及转子动力学理论试验研究。E-mail:zhanggh@hit.edu.cn

  • 中图分类号: V21;TK14

Experiment on dynamic characteristics of squeeze film damper with different groove

  • 摘要:

    基于挤压油膜阻尼器(squeeze film damper, SFD)动力学特性系数识别试验台研究了油槽深度、供油压力以及供油孔数对活塞环端封SFD泄漏量和阻尼性能的影响。试验结果表明:带油槽结构的SFD滑油泄漏量是无油槽结构的2~7倍,油槽深度增加会增大泄漏量;低油压下阻尼系数的试验结果与短轴承理论解较接近,高油压下阻尼系数的试验结果在短轴承与长轴承理论解之间;对比无油槽结果,带油槽时阻尼性能有所下降,但是0.1 MPa以内两者阻尼系数接近;油槽较浅(深度为5倍油膜半径间隙, 5c)时,低油压单孔供油与高油压多孔供油平均阻尼系数均能达到4.0×104~5.0×104 N·s/m;油槽较深(深度为15c)时低油压单孔供油平均阻尼系数较大,可达到8.06×104 N·s/m。低油压单孔供油时引入油槽结构显著提高SFD阻尼系数,其可用于提高低供油压下SFD的减振性能。

     

  • 图 1  SFD典型结构示意图

    Figure 1.  Typical schematic of SFD

    图 2  SFD动力学系数测量装置

    Figure 2.  Test rig of dynamic coefficient for SFD

    图 3  供油试验件端部供油孔与传感器周向分布

    Figure 3.  Circumferential distribution of oil supply holes and sensors at the end of specimens

    图 4  3种供油试验件油膜区关键参数示意

    Figure 4.  Critical parameters of film land for three specimens

    图 5  供油孔分布

    Figure 5.  Distribution of oil supply holes

    图 6  SFD动力学系数识别示意图

    Figure 6.  Schematic of dynamic coefficient identification for SFD

    图 7  1孔供油时静态与动态滑油泄漏量变化

    Figure 7.  Variations of leakage under static and dynamic when oil supply with single hole

    图 8  3孔供油时静态与动态滑油泄漏量变化

    Figure 8.  Variations of leakage under static and dynamic when oil supply with three holes

    图 9  6孔供油时静态与动态滑油泄漏量变化

    Figure 9.  Variations of leakage under static and dynamic when oil supply with six holes

    图 10  不同供油孔数下SFD无量纲泄漏量

    Figure 10.  Dimensionless leakage of SFD under different number of oil supply holes

    图 11  不同供油试验件的短轴承理论值

    Figure 11.  Theoretical solution of short bearings for different specimens

    图 12  不同供油试验件的长轴承理论值

    Figure 12.  Theoretical solution of long bearings for different specimens

    图 13  供油试验件A的$C_{xx}$$C_{yy}$

    Figure 13.  $C_{xx}$ and $C_{yy}$ of specimen A

    图 14  供油试验件B的$C_{xx}$$C_{yy}$

    Figure 14.  $C_{xx}$ and $C_{yy}$ of specimen B

    图 15  供油试验件C的$C_{xx}$$C_{yy}$

    Figure 15.  $C_{xx}$ and $C_{yy}$ of specimen C

    图 16  不同供油孔数和供油压力下供油试验件A、B、C的$C_{yy }- C_{xx}$

    Figure 16.  $C_{yy} - C_{xx}$of specimens A、B, and C under different numbers of oil supply holes and pressures

    图 17  不同供油压力下平均主阻尼系数对比

    Figure 17.  Comparison of average principal damping coefficient under different oil supply pressures

    图 18  不同供油孔数下平均主阻尼系数对比

    Figure 18.  Comparison of average principal damping coefficient under different numbers of oil supply holes

    表  1  SFD供油试验件供油孔分布

    Table  1.   Distribution of oil supply holes on specimens for SFD

    供油孔角度/(°) 编号 描述
    0(360) 1# 最上方
    60 2#
    120 3#
    180 4# 最下方
    240 5#
    300 6#
    下载: 导出CSV

    表  2  供油试验件参数汇总

    Table  2.   Summary parameters of specimens

    参数 A B C 参数 A B C
    油槽有/无 油槽轴向位置${s_{\text{g}}}$/mm 6.27 6.27
    油槽宽度${w_{\text{g}}}$/mm 0 2.5 2.5 有效油膜长度$L$/mm 25 22.5 22.5
    油槽深度${d_{\text{g}}}$/mm 0 1 3
    下载: 导出CSV
  • [1] QUINN R. Experimental study of uncentralized squeeze film dampers[R]. Cleveland,US: Lewis Research Center National Aeronautics and Space Administration,1983.
    [2] SAN ANDRÉS L. Analysis of short squeeze film dampers with a central groove[J]. Journal of Tribology,1992,114(4): 659-664.
    [3] ARAUZ G L,SAN ANDRÉS L. Effect of a circumferential feeding groove on the dynamic force response of a short squeeze film damper[J]. Journal of Tribology,1994,116(2): 369-376.
    [4] ARAUZ G L,ANDRES L S. Experimental force response of a grooved squeeze film damper[J]. Tribology International,1997,30(1): 77-86.
    [5] ZHANG J X,ROBERTS J B. Force coefficients for a centrally grooved short squeeze film damper[J]. Journal of Tribology,1996,118(3): 608-616.
    [6] TAN Qingchang,LI Xaohua,ZHAO Dawei. Analytical study of the effect of a circumferential feeding groove on the unbalance response of a rigid rotor in a squeeze film damper[J]. Tribology International,1998,31(5): 265-270.
    [7] SIEW C C,HILL M,HOLMES R. Evaluation of various fluid-film models for use in the analysis of squeeze film dampers with a central groove[J]. Tribology International,2002,35(8): 533-547.
    [8] LUND J W,MYLLERUP C M,HARTMANN H. Inertia effects in squeeze-film damper bearings generated by circumferential oil supply groove[J]. Journal of Vibration and Acoustics,2003,125(4): 495-499.
    [9] DELGADO A,SAN ANDRÉS L. A model for improved prediction of force coefficients in grooved squeeze film dampers and oil seal rings[J]. Journal of Tribology,2010,132(3): 032202.
    [10] GROVES K H,BONELLO P. Improved identification of squeeze-film damper models for aeroengine vibration analysis[J]. Tribology International,2010,43(9): 1639-1649.
    [11] GIBERT C,GUSKOV M,SANCHEZ L,et al. Damping coefficient estimation of a squeeze-film damper operating in a dual shaft test rig[J]. Mécanique & Industries,2010,11(5): 297-308.
    [12] BOPPA P,SEKARAN A,MORRISON G. Effects of adding a central groove to the squeeze film damper lands[R]. Incline Village,US: ASME,2014.
    [13] SAN ANDRÉS L,SESHAGIRI S. Damping and inertia coefficients for two end sealed squeeze film dampers with a central groove: measurements and predictions[J]. Journal of Engineering for Gas Turbines and Power,2013,135(11): 112503.
    [14] SAN ANDRÉS L. Force coefficients for a large clearance open ends squeeze film damper with a central feed groove: experiments and predictions[J]. Tribology International,2014,71: 17-25.
    [15] SAN ANDRÉS L,JEUNG S H. Experimental performance of an open ends,centrally grooved,squeeze film damper operating with large amplitude orbital motions[J]. Journal of Engineering for Gas Turbines and Power,2015,137(3): 032508.
    [16] LEE G J,KIM J,STEEN T. Application of computational fluid dynamics simulation to squeeze film damper analysis[J]. Journal of Engineering for Gas Turbines and Power,2017,139(10): 102501.
    [17] HWANG J S,RYU K,JEUNG S H. Test rig development for identification of rotordynamic force coefficients of squeeze film dampers in automotive turbocharger bearing systems[J]. Journal of the Korean Society of Tribologists and Lubrication Engineers,2018,34(1): 33-41.
    [18] KANG Xiao,PALAZZOLO A,ZHONG Wan. Auxiliary bearing squeeze film dampers for magnetic bearing supported rotors[J]. Tribology International,2020,146: 106181.
    [19] FAN Tieshu,BEHDINAN K. An analytical model for open-ended squeeze film damper with a circumferential central groove[J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology,2021,235(10): 2110-2121.
    [20] SAN ANDRÉS L,RODRÍGUEZ B. On the experimental dynamic force performance of a squeeze film damper supplied through a check valve and sealed with O-Rings[J]. Journal of Engineering for Gas Turbines and Power,2021,143(11): 111011.
    [21] SAN ANDRÉS L,JEUNG S H. Response of a squeeze film damper-elastic structure system to multiple and consecutive impact loads[J]. Journal of Engineering for Gas Turbines and Power,2016,138(12): 122504.
    [22] SAN ANDRÉS L,KOO B,JEUNG S H. Experimental force coefficients for two sealed ends squeeze film dampers (piston rings and O-rings): an assessment of their similarities and differences[J]. Journal of Engineering for Gas Turbines and Power,2019,141(2): 021024.
    [23] 《航空发动机设计手册》总编委会. 航空发动机设计手册:第19册 转子动力学及整机振动[M]. 北京:航空工业出版社,2000: 236-237.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  246
  • HTML浏览量:  55
  • PDF量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 网络出版日期:  2024-01-26

目录

    /

    返回文章
    返回