留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑动弧的燃烧室头部强化燃烧特性

程伟达 于锦禄 陈朝 张磊 赵兵兵

程伟达,于锦禄,陈朝,等.基于滑动弧的燃烧室头部强化燃烧特性[J].航空动力学报,2022,37(7):1392‑1402. doi: 10.13224/j.cnki.jasp.20210706
引用本文: 程伟达,于锦禄,陈朝,等.基于滑动弧的燃烧室头部强化燃烧特性[J].航空动力学报,2022,37(7):1392‑1402. doi: 10.13224/j.cnki.jasp.20210706
CHENG Weida,YU Jinlu,CHEN Zhao,et al.Enhanced combustion characteristics of combustor head based on gliding arc[J].Journal of Aerospace Power,2022,37(7):1392‑1402. doi: 10.13224/j.cnki.jasp.20210706
Citation: CHENG Weida,YU Jinlu,CHEN Zhao,et al.Enhanced combustion characteristics of combustor head based on gliding arc[J].Journal of Aerospace Power,2022,37(7):1392‑1402. doi: 10.13224/j.cnki.jasp.20210706

基于滑动弧的燃烧室头部强化燃烧特性

doi: 10.13224/j.cnki.jasp.20210706
基金项目: 

国家自然科学基金 91741112

详细信息
    作者简介:

    程伟达(1997-),男,硕士生,主要从事航空发动机等离子体点火助燃研究。

    通讯作者:

    于锦禄(1981-),男,副教授、硕士生导师,博士,主要从事航空发动机等离子体点火助燃研究。E⁃mail:yujinlu1@163.com

  • 中图分类号: V235.1

Enhanced combustion characteristics of combustor head based on gliding arc

  • 摘要:

    为了研究基于滑动弧的燃烧室头部强化燃烧效果,探究了燃烧室头部的点火过程以及不同等离子体电源输入功率下的点/熄火边界,利用像增强系统获得了CH*基团的分布云图。实验结果表明:输入功率的增大使得燃烧室的点/熄火边界均得到拓展,与160 W工况相比,输入功率为320 W时,点火边界平均拓宽约17.6%,与未放电相比,输入功率为320 W时,熄火边界平均拓宽约45.3%,滑动弧放电对熄火边界拓宽效果明显;当滑动弧能够点燃来流新鲜混合气时,输入功率的增加使得CH*基团分布向上游移动,当输入功率为320 W时,燃烧火焰驻留在燃烧室头部,当滑动弧激励器仅具有助燃作用时,输入功率的增加使得局部CH*基团辐射强度增强,热释放速率增加。

     

  • 图 1  燃烧室头部结构图

    Figure 1.  Structure diagram of combustor head

    图 2  燃烧室头部点火助燃实验系统示意图

    Figure 2.  Schematic diagram of combustor head ignition and combustion assisted experimental system

    图 3  像增强采集系统工作原理

    Figure 3.  Working principle diagram of image intensifier

    图 4  空气流量为25 m3/h时的点火过程

    Figure 4.  Ignition process with air flow of 25 m3/h

    图 5  不同输入功率下燃烧室头部的点火边界

    Figure 5.  Ignition boundary of combustor head under different input power

    图 8  旋流燃烧室熄火边界

    Figure 8.  Flameout boundary of gliding arc swirl actuator

  • [1] 于锦禄,黄丹青,王思博,等.等离子体点火与助燃技术在航空发动机上的应用[J].航空发动机,2018,44(3):12⁃20.

    YU Jinlu,HUANG Danqing,WANG Sibo,et al.Application of plasma ignition and assisted combustion of aeroengine[J].Aeroengine,2018,44(3):12⁃20.(in Chinese)
    [2] 何立明,刘兴建,赵兵兵,等.等离子体强化燃烧的目前研究进展[J].航空动力学报,2016,31(7):1537⁃1551.

    HE Liming,LIU Xingjian,ZHAO Bingbing,et al.Current investigation progress of plasma⁃assisted ignition and combustion[J].Journal of Aerospace Power,2016,31(7):1537⁃1551.(in Chinese)
    [3] 李 钢,李 华,杨凌元,等.俄罗斯等离子体点火和辅助燃烧研究进展[J].科技导报,2012,30(17):66⁃72.

    LI Gang,LI Hua,YANG Lingyuan,et al.Review of the plasma ignition and assisted combustion in Russia[J].Science & Technology Review,2012,30(17):66⁃72.(in Chinese)
    [4] JU Y,SUN W.Plasma assisted combustion:dynamics and chemistry[J].Progress in Energy and Combustion Science,2015,48:21⁃83.
    [5] 张若兵,罗 刚,黄昊晨,等.电极结构对滑动弧放电等离子体尺寸的影响规律[J].高电压技术,2019,45(10):3357⁃3364.

    ZHANG Ruobing,LUO Gang,HUANG Haocheng,et al.Influence of electrode structure on the dimension parameters of gliding arc discharge plasma[J].High Voltage Engineering,2019,45(10):3357⁃3364.(in Chinese)
    [6] 汤洁,段忆翔,赵卫,等.介质阻挡放电等离子体增强引擎燃烧技术的初步研究[J].高电压技术,2010,36(3):733⁃738.

    TANG Jie,DUAN Yixiang,ZHAO Wei,et al.Study of dielectric barrier discharge nonequilibrium plasma⁃assisted combustion for more efficient engine[J].High Voltage Engineering,2010,36(3):733⁃738.(in Chinese)
    [7] 赵兵兵,张 鹏,何立明,等.等离子体助燃对燃烧产物影响的实验[J].航空动力学报,2012,27(9):1974⁃1978.

    ZHAO Bingbing,ZHANG Peng,HE Liming,et al.Experiments of plasma assisted combustion's effect on combustion products[J].Journal of Aerospace Power,2012,27(9):1974⁃1978.(in Chinese)
    [8] HWANG J,KIM W,BAE C,et al.Application of a novel microwave⁃assisted plasma ignition system in a direct injection gasoline engine[J].Applied Energy,2017,205:562⁃576.
    [9] 聂万胜,周思引,车学科.纳秒脉冲放电等离子体助燃技术研究进展[J].高电压技术,2017,43(6):1749⁃1758.

    NIE Wansheng,ZHOU Siyin,CHE Xueke.Review of plasma assisted combustion technology by nanosecond pulsed discharge[J].High Voltage Engineering,2017,43(6):1749⁃1758.(in Chinese)
    [10] ZHAO Bingbing,CHEN Gaocheng,HE Liming,et al.Experimental investigation of plasma jet ignition characteristics in kerosene⁃air mixtures[J].Journal of Aerospace Engineering,2020,33(2):04019113.1⁃04019113.5.
    [11] CZERNICHOWSKI A.Gliding arc:applications to engineering and environment control[J].Pure and Applied Chemistry,1994,66(6):1301⁃1310.
    [12] OMBRELLO T,WON S H,JU Y,et al.Flame propagation enhancement by plasma excitation of oxygen:Part Ⅱ effects of O2 (a1Δg)[J].Combustion and Flame,2010,157(10):1916⁃1928.
    [13] 张川宇,冯 戎,朱家健,等.滑动弧等离子体辅助超声速燃烧实验研究[J].固体火箭技术,2021,44(2):160⁃165.

    ZHANG Chuanyu,FENG Rong,ZHU Jiajian,et al.Experimental investigation on gliding arc plasma⁃assisted combustion in the supersonic flow[J].Journal of Solid Rocket Technology,2021,44(2):160⁃165.(in Chinese)
    [14] FENG Rong,HUANG Yuhui,ZHU Jiajian,et al.Ignition and combustion enhancement in a cavity⁃based supersonic combustor by a multi⁃channel gliding arc plasma[J].Experimental Thermal and Fluid Science,2021,120:110248.1⁃110248.11.
    [15] GAO J,KONG C,ZHU J,et al.Visualization of instantaneous structure and dynamics of large⁃scale turbulent flames stabilized by a gliding arc discharge[J].Proceedings of the Combustion Institute,2019,37(4):5629⁃5636.
    [16] OMBRELLO T,JU Y,FRIDMAN A.Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma[J].AIAA Journal,2008,46(10):2424⁃2433.
    [17] OMBRELLO T,JU Y.Kinetic Ignition enhancement of H2 versus fuel⁃blended air diffusion flames using nonequilibrium plasma[J].IEEE Transactions on Plasma Science,2008,36(6):2924⁃2932.
    [18] TANG Yong,SUN Jinguo,SHI Baolu,et al.Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges[J].Combustion and Flame,2021,231:111483.1⁃111483.13.
    [19] 于锦禄.等离子体点火与助燃在航空发动机中的应用研究[R].西安:第三届全国青年燃烧学术会议,2017.
    [20] 张磊,于锦禄,陈一,等.基于滑动弧的航空发动机燃烧室头部喷雾特性[J].航空学报,2021,42(3):275⁃289.

    ZHANG Lei,YU Jinlu,CHEN Yi,et al.Spray characteristics of gliding arc discharge combustion dome of areo⁃engine combustors[J].Acta Aeronautica et Astronautica Sinica,2021,42(3):275⁃289.(in Chinese)
    [21] 胡长淮,何立明,陈一,等.燃烧室头部激励的等离子体强化燃烧特性实验研究[J].推进技术,2021,42(12):2762⁃2771.

    HU Changhuai,HE Liming,CHEN Yi,et al.Experimental research on the characteristics of plasma⁃enhanced combustion excited by the combustor dome[J].Journal of Propulsion Technology,2021,42(12):2762⁃2771.(in Chinese)
    [22] 张凯,金迪,宋飞龙,等.纳秒脉冲滑动弧放电等离子体裂解煤油实验研究[EB/OL].推进技术.[2021⁃12⁃14].https:∥doi.org/10.13675/j.cnki.tjjs.200993. doi: 10.13675/j.cnki.tjjs.200993

    ZHANG Kai,JIN Di,SONG Feilong,et al.Experimental research on nanosecond pulsed gliding arc discharge plasma cracking kerosene[EB/OL].Journal of Propulsion Technology.[2021⁃12⁃14].(in Chinese) doi: 10.13675/j.cnki.tjjs.200993
    [23] 王宽亮,李飞,刘德峰,等.基于CH自由基发光的旋流火焰放热率时空特性研究[J].航空动力学报,2019,34(4):920⁃928.

    WANG Kuanliang,LI Fei,LIU Defeng,et al.Study of the temporal and spatial characteristics for swirling flame heat release rate based on CH chemiluminescence[J].Journal of Aerospace Power,2019,34(4):920⁃928.(in Chinese)
    [24] 肖为,江立军,陈盛.燃烧室电火花点火模型[J].航空动力学报,2021,36(1):25⁃33.

    XIAO Wei,JIANG Lijun,CHEN Sheng.Spark ignition model for combustor[J].Journal of Aerospace Power,2021,36(1):25⁃33.(in Chinese)
    [25] HABER L C,VANDSBURGER U,SAUNDERS W R,et al.An experimental examination of the relationship between chemiluminescent light emissions and heat⁃release rate under non⁃adiabatic conditions[R].ASME Paper 2000⁃GT⁃0121,2000.
    [26] 黄勇,林宇震,樊志军,等.燃烧与燃烧室[M].北京:北京航空航天出版社,2009.
    [27] 何立明.飞机推进系统原理[M].北京:国防工业出版社,2009.
  • 加载中
图(13)
计量
  • 文章访问数:  64
  • HTML浏览量:  11
  • PDF量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14

目录

    /

    返回文章
    返回