留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MFMD和Transformer-CNN的滚动轴承故障诊断方法

刘俊锋 俞翔 万海波 刘潇

刘俊锋, 俞翔, 万海波, 等. 基于MFMD和Transformer-CNN的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(6):1446-1456 doi: 10.13224/j.cnki.jasp.20210709
引用本文: 刘俊锋, 俞翔, 万海波, 等. 基于MFMD和Transformer-CNN的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(6):1446-1456 doi: 10.13224/j.cnki.jasp.20210709
LIU Junfeng, YU Xiang, WAN Haibo, et al. Fault diagnosis method of rolling bearing using MFMD and Transformer-CNN[J]. Journal of Aerospace Power, 2023, 38(6):1446-1456 doi: 10.13224/j.cnki.jasp.20210709
Citation: LIU Junfeng, YU Xiang, WAN Haibo, et al. Fault diagnosis method of rolling bearing using MFMD and Transformer-CNN[J]. Journal of Aerospace Power, 2023, 38(6):1446-1456 doi: 10.13224/j.cnki.jasp.20210709

基于MFMD和Transformer-CNN的滚动轴承故障诊断方法

doi: 10.13224/j.cnki.jasp.20210709
基金项目: 国家自然科学基金(51679245)
详细信息
    作者简介:

    刘俊锋(1997-),男,博士生,主要从事旋转机械故障诊断与智能运维研究

  • 中图分类号: V263.6;TH133.3

Fault diagnosis method of rolling bearing using MFMD and Transformer-CNN

  • 摘要:

    针对滚动轴承在变工况和跨型号下故障诊断效果不佳、泛化能力较差,同时在实际训练中样本数量严重不足的问题,从振动信号序列特性出发,提出了一种基于改进傅里叶模态分解(MFMD)和Transformer convolutional neural network(Transformer-CNN)的故障诊断方法。设计了振动数据预处理模块,利用MFMD和位置编码对数据样本进行预处理并标记序列位置关系,随后设计了基于注意力机制的Transformer-CNN序列建模单元,利用最大值池化优化了缩放点积注意力机制的循环堆叠结构,减少了网络的待训练参数并提升了网络序列建模能力。采用预训练-微调的迁移学习方法,将预训练模型参数迁移至目标域并进行模型微调,可以避免数据不足导致的过拟合现象。实验结果表明:相较于基准算法,Transformer-CNN可以降低50%以上的故障诊断错误率。在变工况和跨型号的小样本迁移学习实验中,该算法可以提升8.75%的诊断准确率,同时可以提升收敛速度。

     

  • 图 1  Transformer-CNN结构图

    Figure 1.  Structure diagram of Transformer-CNN

    图 2  Transformer-CNN单元

    Figure 2.  Transformer-CNN unit

    图 3  迁移学习框架

    Figure 3.  Transfer learning framework

    图 4  迁移学习算法流程

    Figure 4.  Transfer learning algorithm flow

    图 5  重叠采样示意图

    Figure 5.  Schematic diagram of overlapping sampling

    图 6  轴承加速寿命试验台

    Figure 6.  Bearing accelerated life test bench

    图 7  MFMD提取的故障特征

    Figure 7.  Fault feature extraction results based on MFMD

    图 8  位置编码示意图

    Figure 8.  Schematic diagram of position encoding

    图 9  不同编码器设置的效果对比

    Figure 9.  Comparison of the effects of different encoder settings

    图 10  故障分类混淆矩阵

    Figure 10.  Fault classification confusion matrix

    图 11  变工况迁移学习和重新训练对比

    Figure 11.  Comparison between cross-working transfer learning and retraining

    图 12  跨型号迁移学习和重新训练效果对比

    Figure 12.  Effect comparison between cross-type transfer learning and retraining

    图 13  t-SNE可视化分析

    Figure 13.  Visualization analysis based on t-SNE

    表  1  Transformer-CNN网络参数

    Table  1.   Network parameters of Transformer-CNN

    顺序网络层输出尺寸核大小标准化
    1输入层64×800×1
    2嵌入层64×800×64
    3位置编码层64×800×64
    4编码器层64×800×64
    5池化层64×800×88×1
    6编码器层64×800×8
    7编码器层64×800×8
    8编码器层64×800×8
    9池化层64×800×18×1
    10线性层64×10×1
    11Softmax64×10
    下载: 导出CSV

    表  2  网络基本参数设置

    Table  2.   Basic parameter setting of networks

    项目设置
    优化器Adam学习率为0.0001
    损失函数交叉熵损失
    批处理大小64
    下载: 导出CSV

    表  3  轴承样本统计

    Table  3.   Bearing sample statistics

    数据集负载转速/(r/min)故障尺寸/mm故障类型训练样本数量测试样本数量
    A0.7 kW17720.1778,
    0.3556,
    0.5334
    正常/内圈/
    外圈/滚动体
    800200
    1.4 kW1750
    2.1 kW1730
    B11 kN2250正常400100
    内圈
    外圈
    下载: 导出CSV

    表  4  不同编码器设置结果

    Table  4.   Results of different encoder settings

    参数方案
    1+32+23+1
    准确率/%99.15±2.1597.15±2.6090.55±2.10
    平均耗时/s14.7315.5616.16
    参数总量132 25917 7563212 867
    下载: 导出CSV

    表  5  对比算法结构参数设置

    Table  5.   Contrast algorithm structure parameter settings

    算法设置
    Transformer实体嵌入(800,64)→
    位置编码(800,64)→
    编码器×4(800,64)→线性层(10,1)→Softmax
    CNN实体嵌入(800,64)→
    卷积块(800,64)→
    最大值池化(400,64)→
    卷积&池化→线性层(10,1)→Softmax
    LSTM实体嵌入(800,64)→
    LSTM(隐层节点个数为1024,层数为2)→
    池化层(2114,1)→
    线性层(10,1)→Softmax
    下载: 导出CSV

    表  6  不同算法的效果对比

    Table  6.   Effect comparison of different algorithms

    网络类型Transformer-CNNTransformerCNNLSTM
    准确率/%99.15±2.1598.15±2.2097.45±3.1097.20±3.15
    平均耗时/s14.7316.7721.0416.23
    参数量132259241415229927255687
    下载: 导出CSV

    表  7  迁移任务的总结

    Table  7.   Summary of transfer tasks

    编号场景迁移任务迁移条件
    1变工况工况1→工况20.7→1.4 kW
    2工况1→工况30.7→2.1 kW
    3工况2→工况31.4→2.1 kW
    4工况3→工况12.1→0.7 kW
    5工况3→工况22.1→1.4 kW
    6工况2→工况11.4→0.7 kW
    7跨型号轴承A→轴承BA→B
    8轴承B→轴承AB→A
    下载: 导出CSV

    表  8  变工况迁移学习故障分类结果

    Table  8.   Fault classification results of transfer learning under variable working conditions

    迁移场景准确率/%
    5%样本10%样本15%样本20%样本
    190.00±1.5097.25±1.7598.65±1.6099.00±1.25
    290.50±1.5097.50±1.3098.30±1.2599.05±1.15
    390.25±1.3597.15±1.5098.55±1.3098.95±1.40
    489.75±1.3597.10±1.7598.50±1.4099.15±1.50
    591.50±1.5097.55±1.7598.05±1.6599.05±1.20
    690.20±1.3597.25±1.6598.35±1.8099.10±1.65
    场景1重新训练81.25±2.2592.50±2.3594.75±1.7595.65±1.50
    迁移学习准确率增幅8.754.753.903.35
    下载: 导出CSV
  • [1] 张向阳, 陈果, 郝腾飞, 等. 基于机匣信号的滚动轴承故障卷积神经网络诊断方法[J]. 航空动力学报, 2019, 34(12): 2729-2737.

    ZHANG Xiangyang, CHEN Guo, HAO Tengfei, et al. Rolling bearing fault convolution neural network diagnosis method based on gearbox signal[J]. Journal of Aerospace Power, 2019, 34 (12): 2729-2737. (in Chinese)
    [2] SINGH P,JOSHI S D,PATNEY R K,et al. The Fourier decomposition method for nonlinear and nonstationary time series analysis[J]. Proceedings Mathematical Physical and Engineering Sciences,2015,473(2199): 871-0897.
    [3] 郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125-136.

    ZHENG Jinde, PAN Haiyang , CHENG Junsheng , et al. Mechanical fault diagnosis method based on adaptive empirical Fourier decomposition[J]. Journal of Mechanical Engineering, 2020, 56(9): 125-136. (in Chinese)
    [4] CHENG Yiwei,LIN Manxi,WU Jun,et al. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network[J]. Knowledge-Based Systems,2021,216: 106796.1-106796.12.
    [5] LI Jimeng,CHENG Xing,LI Qiang,et al. Adaptive energy-constrained variational mode decomposition based on spectrum segmentation and its application in fault detection of rolling bearing[J]. Signal Processing,2021,183: 108025.1-108025.17.
    [6] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5): 94-104. doi: 10.3901/JME.2018.05.094

    LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunity and challenge of mechanical intelligent fault diagnosis under big data[J]. Journal of Mechanical Engineering,2018,54(5): 94-104. (in Chinese) doi: 10.3901/JME.2018.05.094
    [7] 张西宁,郭清林,刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报,2020,54(12): 1-13.

    ZHANG Xining,GUO Qinglin,LIU Shuyu. Deep learning technology and its application analysis and prospect of fault diagnosis[J]. Journal of Xi’an Jiaotong University,2020,54(12): 1-13. (in Chinese)
    [8] WEISS K,KHOSHGOFTAAR T M,WANG D D. A survey of transfer learning[J]. Journal of Big Data,2016,3(1): 1-40. doi: 10.1186/s40537-015-0036-x
    [9] NITISH S,GEOFFREY E. HINTON, et al. Dropout: a simple way to prevent neural networks from overfitting.[J]. Journal of Machine Learning Research,2014,15(1): 1929-1958.
    [10] LI Xiang,ZHANG Wei,DING Qian. Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks[J]. IEEE Transactions on Industrial Electronics,2019,66(7): 5525-5534. doi: 10.1109/TIE.2018.2868023
    [11] 张西宁,余迪,刘书语. 基于迁移学习的小样本轴承故障诊断方法研究[J]. 西安交通大学学报,2021,55(10): 30-37.

    ZHANG Xining,YU Di,LIU Shuyu. Research on small sample bearing fault diagnosis method based on transfer learning[J]. Journal of Xi’an Jiaotong University,2021,55(10): 30-37. (in Chinese)
    [12] ZHANG Kaiyu,CHEN Jinglong,ZHANG Tianci,et al. A compact convolutional neural network augmented with multiscale feature extraction of acquired monitoring data for mechanical intelligent fault diagnosis[J]. Journal of Manufacturing Systems,2020,55: 273-284. doi: 10.1016/j.jmsy.2020.04.016
    [13] ZHU J,CHEN N,SHEN C. A new deep transfer learning method for bearing fault diagnosis under different working conditions[J]. IEEE Sensors Journal,2019,20(15): 8394-8402.
    [14] 何强,唐向红,李传江,等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程,2021,32(10): 1164-1171,1180.

    HE Qiang,TANG Xianghong,LI Chuanjiang,et al. Bearing fault diagnosis of small sample data under unbalanced load[J]. China Mechanical Engineering,2021,32(10): 1164-1171,1180. (in Chinese)
    [15] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [16] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2021-08-20].https: //arxiv.org/abs/1412.3555.
    [17] 周奇才,沈鹤鸿,赵炯,等. 基于改进堆叠式循环神经网络的轴承故障诊断[J]. 同济大学学报(自然科学版),2019,47(10): 1500-1507. doi: 10.11908/j.issn.0253-374x.2019.10.016

    ZHOU Qicai,SHEN Hehong,ZHAO Jiong,et al. Bearing fault diagnosis based on improved stackable cyclic neural network[J]. Journal of Tongji University (Natural Science Edition),2019,47(10): 1500-1507. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.10.016
    [18] ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[EB/OL]. [2021-06-20].https: //arxiv.org/abs/1706.03762.
    [19] LIU Junfeng,YU Xiang. Rolling element bearing fault diagnosis for complex equipment based on MFMD and BP neural network[J]. Journal of Physics Conference Series,2021,1948(1): 012113.1-012113.10.
    [20] LIU Tao,CHEN Jin,DONG Guangming,et al. The fault detection and diagnosis in rolling element bearings using frequency band entropy[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2013,227(1): 87-99. doi: 10.1177/0954406212441886
    [21] KIM Y, DENTON C, HOANG L, et al. Structured attention networks[EB/OL]. [2021-06-20].https: //arxiv.org/abs/1702.00887.
    [22] WANG Biao,LEI Yagup,LI Naipeng,et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability,2018,69(1): 401-412.
    [23] JOHNSON R, ZHANG T. Convolutional neural networks for text categorization: shallow word-level vs. deep character-level[EB/OL]. [2021-06-20].https: // arxiv.org/abs/1609.00718.
    [24] LA S W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C]// Twenty-ninth AAAI conference on Artificial Intelligence. Menlo Park, US: AIAA, 2015: 2267-2273.
    [25] 赵海峰,杨国斌. 基于振动信号的深沟球轴承滚动体故障诊断研究[J]. 化工机械,2014,41(3): 291-295. doi: 10.3969/j.issn.0254-6094.2014.03.006

    ZHAO Haifeng,YANG Guobin. Research on rolling body fault diagnosis of deep groove ball bearing based on vibration signal[J]. Chemical Machinery,2014,41(3): 291-295. (in Chinese) doi: 10.3969/j.issn.0254-6094.2014.03.006
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  398
  • HTML浏览量:  244
  • PDF量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 网络出版日期:  2022-10-20

目录

    /

    返回文章
    返回