留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪刀式尾桨前飞状态气动噪声特性计算

李志彬 杨永飞 孙伟 林永峰 樊枫

李志彬, 杨永飞, 孙伟, 等. 剪刀式尾桨前飞状态气动噪声特性计算[J]. 航空动力学报, 2022, 37(12):2691-2706 doi: 10.13224/j.cnki.jasp.20210713
引用本文: 李志彬, 杨永飞, 孙伟, 等. 剪刀式尾桨前飞状态气动噪声特性计算[J]. 航空动力学报, 2022, 37(12):2691-2706 doi: 10.13224/j.cnki.jasp.20210713
LI Zhibin, YANG Yongfei, SUN Wei, et al. Computation on aeroacoustic characteristics of scissors tail-rotor in forward flight[J]. Journal of Aerospace Power, 2022, 37(12):2691-2706 doi: 10.13224/j.cnki.jasp.20210713
Citation: LI Zhibin, YANG Yongfei, SUN Wei, et al. Computation on aeroacoustic characteristics of scissors tail-rotor in forward flight[J]. Journal of Aerospace Power, 2022, 37(12):2691-2706 doi: 10.13224/j.cnki.jasp.20210713

剪刀式尾桨前飞状态气动噪声特性计算

doi: 10.13224/j.cnki.jasp.20210713
基金项目: 国防基础科研计划(JCKY2019205D002)
详细信息
    作者简介:

    李志彬(1993-),男,工程师,硕士,主要从事直升机空气动力学、旋翼噪声仿真与控制研究。E-mail:lzb19306876@163.com

  • 中图分类号: V211.52

Computation on aeroacoustic characteristics of scissors tail-rotor in forward flight

  • 摘要:

    基于计算流体力学(CFD)建立了适用于剪刀式尾桨的流场计算模型,采用嵌套网格方法模拟尾桨运动,采用双时间方法进行时间推进。针对不同的尾桨构型,采用高效配平策略“差量法”将剪刀式尾桨配平至相同负载状态。在此基础上,采用Ffowcs Williams-Hawkings(FW-H)方程计算剪刀式尾桨的气动噪声特性。应用该方法对不同前飞速度下剪刀式尾桨的气动力和噪声进行计算分析,着重研究了剪刀角和轴向间距两个重要构型参数的影响。计算结果表明:剪刀角对剪刀式尾桨气动力和气动噪声特性均有重要影响,而轴向间距在合理的变化范围内,对尾桨影响较小。与常规尾桨相比,前飞状态下剪刀式尾桨的噪声指向性变化较小,但噪声幅值变化显著。

     

  • 图 1  剪刀式尾桨网格系统

    Figure 1.  Scissors tail-rotor grid system

    图 2  桨叶表面压力系数计算与试验对比

    Figure 2.  Comparison of blade surface pressure coefficient between calculation and experiment

    图 3  扭矩系数随拉力系数的变化

    Figure 3.  Torque coefficient varies with thrust coefficient

    图 4  模型旋翼声压时间历程对比

    Figure 4.  Comparison of sound pressure-time history for model rotor

    图 5  剪刀式尾桨构型示意图[10]

    Figure 5.  Schematic of scissors tail-rotor configuration[10]

    图 6  尾桨总距随剪刀角变化

    Figure 6.  Tail-rotor collective pitch varies with scissors angle

    图 7  剪刀角对尾桨桨叶拉力的影响

    Figure 7.  Effect of scissors angle on scissors tail-rotor blade thrust

    图 8  前进比为0.15剪刀式尾桨桨尖涡空间分布图

    Figure 8.  Vortex schematic of scissors tail-rotor in advance ratio 0.15

    图 9  尾桨总距随轴向间距变化

    Figure 9.  Tail-rotor collective pitch varies with vertical space

    图 10  轴向间距对尾桨桨叶拉力的影响

    Figure 10.  Effect of vertical space on tail blade thrust

    图 11  声辐射半球计算位置示意图

    Figure 11.  Schematic of the acoustic radiation ball

    图 12  前进比为0.25状态剪刀角对尾桨厚度噪声的影响

    Figure 12.  Effect of scissor angle on the thickness noise of tail rotor (advance ratio is 0.25)

    图 13  不同状态尾桨厚度噪声最大值随剪刀角的变化

    Figure 13.  Maximum thickness noise varies with scissors angle in different cases

    图 14  观测点#1处不同尾桨典型厚度噪声声压时间历程

    Figure 14.  Thickness sound pressure time history of different tail rotors in observer #1

    图 15  不同前进比状态剪刀角对尾桨载荷噪声的影响

    Figure 15.  Effect of scissor angle on the loading noise of tail rotor in different advance ratio cases

    图 16  不同状态尾桨载荷噪声最大值随剪刀角的变化

    Figure 16.  Maximum loading noise varies with scissors angle in different cases

    图 17  观测点#2处不同尾桨典型载荷噪声声压时间历程

    Figure 17.  Loading sound pressure time history of different tail rotors in observer #2

    图 18  不同前进比状态轴向间距对尾桨载荷噪声的影响

    Figure 18.  Effect of vertical space on the loading noise of tail rotor in different advance ratio cases

    图 19  不同状态尾桨载荷噪声最大值随轴向间距的变化

    Figure 19.  Maximum loading noise varies with vertical space in different cases

    图 20  不同前进比状态剪刀角对尾桨总噪声的影响

    Figure 20.  Effect of scissor angle on the total noise of tail rotor in different advance ratio cases

    图 21  不同状态尾桨总噪声最大值随剪刀角的变化

    Figure 21.  Maximum total noise varies with scissors angle in different cases

    图 22  不同前进比状态轴向间距对尾桨总噪声的影响

    Figure 22.  Effect of vertical space on the total noise of tail rotor in different advance ratio cases

    图 23  不同状态尾桨总噪声最大值随轴向间距的变化

    Figure 23.  Maximum total noise varies with vertical space in different cases

  • [1] LEVERTON J W,POLLARD J S,WILLS C R. Main rotor wake-tail rotor interaction[J]. Vertica,1977,1(3): 213-221.
    [2] MENGER R P, WOOD T L, BEIEGER J T. Effects of aerodynamic interaction between mian and tail rotors on helicopter hover performance and noise[R]. NASA CR-1983-166477, 1983.
    [3] ROGER M,KUCUKCOSKUN K. Near-and-far field modeling of advanced tail-rotor noise using source-mode expansions[J]. Journal of Sound and Vibration,2019,453(1): 328-354.
    [4] SONNEBORN W G O,DREES J M. The scissors rotor[J]. Journal of the American Helicopter Society,1975,20(3): 18-27. doi: 10.4050/JAHS.20.18
    [5] EDWARDS B D. Psychoacoustic testing of modulated blade spacing for main rotor[R]. NASA CR-2002-211651, 2002.
    [6] SULLIVAN B M,EDWARDS B D,BRENTNER K S,et al. A subjective test of modulated blade spacing for helicopter main rotors[J]. Journal of the American Helicopter Society,2005,50(1): 26-32. doi: 10.4050/1.3092840
    [7] ROZHDESTVENSKY M G. Scissors rotor concept: new results obtained[C]//Proceedings of American Helicopter Society 52nd Annual Forum. Washington DC: American Helicopter Society, 1996: 1231-1241.
    [8] XU Guohua,WANG Shicun,ZHAO Qijun. Experimental and analytical investigation on aerodynamic characteristics of helicopter scissors tail rotor[J]. Chinese Journal of Aeronautics,2001,14(4): 193-199.
    [9] XU Guohua,ZHAO Qijun,PENG Yanhui. Study on the induced velocity and noise characteristics of a scissors rotor[J]. Journal of Aircraft,2007,44(3): 806-811. doi: 10.2514/1.24460
    [10] 樊枫,史勇杰,徐国华. 剪刀式尾桨悬停状态气动力及噪声特性计算研究[J]. 航空学报,2013,34(9): 2100-2109. FAN Feng,SHI Yongjie,XU Guohua. Computational research on aerodynamic and aeroacoustic character of scissors tail-rotor in hover[J]. Acta Aeronauytica et Astronautica Sinca,2013,34(9): 2100-2109. (in Chinese
    [11] FAN Feng,XU Guohua,SHI Yongjie,et al. Numerical calculations of aerodynamic and acoustic characteristics for scissored tail-rotors in forward flight[J]. Transactions of Nanjing University of Aeronautics,2016,33(3): 285-293.
    [12] 陈丝雨,招启军,范俊,等. 悬停状态剪刀式尾桨气动/噪声特性优化分析[J]. 航空动力学报,2019,34(5): 1050-1060. CHEN Siyu,ZHAO Qijun,FAN Jun,et al. Optimization analysis for aerodynamic noise characteristics of scissors tail rotor in hover[J]. Journal of Aerospace Power,2019,34(5): 1050-1060. (in Chinese
    [13] 樊枫. 直升机非定常干扰流场与声场的计算方法研究与应用[D]. 南京: 南京航空航天大学, 2013.

    FAN Feng. Research and application of computational methods for unsteady flow filed and sound field of helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [14] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [15] 吴琪,招启军,林永峰,等. 旋翼跨音速非定常黏性绕流的高效CFD模拟方法[J]. 南京航空航天大学学报,2015,47(2): 212-219. WU Qi,ZHAO Qijun,LIN Yongfeng,et al. Highly-efficient CFD method for predicting unsteady transonic viscous flow around rotor[J]. Journal of Nanjing University of Aeronautics and Astronautics,2015,47(2): 212-219. (in Chinese
    [16] FARASSAT F. Linear acoustic formulas for calculation of rotating blade noise[J]. AIAA Journal,1981,19(9): 1122-1130. doi: 10.2514/3.60051
    [17] 江露生,曹亚雄,刘婷,等. 共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究[J]. 北京航空航天大学学报,2021,47(12): 2484-2493. JIANG Lusheng,CAO Yaxiong,LIU Ting,et al. Experimental and computional study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(12): 2484-2493. (in Chinese doi: 10.13700/j.bh.1001-5965.2020.0669
    [18] 吴希明,祁浩天,马率,等. 共轴刚性旋翼气动干扰数值计算方法[J]. 南京航空航天大学学报,2019,51(2): 147-153. WU Ximing,QI Haotian,MA Shuai,et al. Numerical method of coaxial rigid rotor aerodynamic interaction[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(2): 147-153. (in Chinese
  • 加载中
图(27)
计量
  • 文章访问数:  370
  • HTML浏览量:  49
  • PDF量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回