留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷注方式和骨架结构对骨架增强石蜡燃料燃烧影响的数值分析

夏寒青 武毅 王宁飞 张子相 杨钧森 章帆

夏寒青, 武毅, 王宁飞, 等. 喷注方式和骨架结构对骨架增强石蜡燃料燃烧影响的数值分析[J]. 航空动力学报, 2023, 38(6):1496-1505 doi: 10.13224/j.cnki.jasp.20210714
引用本文: 夏寒青, 武毅, 王宁飞, 等. 喷注方式和骨架结构对骨架增强石蜡燃料燃烧影响的数值分析[J]. 航空动力学报, 2023, 38(6):1496-1505 doi: 10.13224/j.cnki.jasp.20210714
XIA Hanqing, WU Yi, WANG Ningfei, et al. Numerical analysis of influence of injection method and skeleton structure on the combustion of skeleton reinforced paraffin fuel[J]. Journal of Aerospace Power, 2023, 38(6):1496-1505 doi: 10.13224/j.cnki.jasp.20210714
Citation: XIA Hanqing, WU Yi, WANG Ningfei, et al. Numerical analysis of influence of injection method and skeleton structure on the combustion of skeleton reinforced paraffin fuel[J]. Journal of Aerospace Power, 2023, 38(6):1496-1505 doi: 10.13224/j.cnki.jasp.20210714

喷注方式和骨架结构对骨架增强石蜡燃料燃烧影响的数值分析

doi: 10.13224/j.cnki.jasp.20210714
基金项目: 国家自然科学基金 (51906016)
详细信息
    作者简介:

    夏寒青(1993-),男,博士生,研究领域为固-液混合火箭发动机

    通讯作者:

    武毅(1988-),男,副研究员,博士,研究领域为火箭发动机内的燃烧与流动。E-mail:Yi.wu@bit.edu.cn

  • 中图分类号: V436.2

Numerical analysis of influence of injection method and skeleton structure on the combustion of skeleton reinforced paraffin fuel

  • 摘要:

    针对聚合物骨架镶嵌石蜡固体燃料在固-液混合火箭发动机中的燃烧问题,开展螺旋型和六角型骨架增强石蜡燃料在直/旋流喷注固-气掺混燃烧器中的燃烧试验,利用CFD软件对燃烧过程进行数值仿真研究。对四种工况燃烧过程进行比较,分析骨架结构和喷注方式对燃烧室内燃烧的影响。结果表明:骨架材料和石蜡基燃料退移速率差异较大,随着燃烧进行骨架结构逐渐凸显。湍流强度和燃料质量流量共同影响燃烧室温度,燃烧室温度随着燃烧进行呈波动下降趋势。旋流喷注工况的燃烧室温度高于直流喷注工况,燃烧室头部存在高温区,轴向温度分布较直流喷注更加均匀,而直流喷注中燃烧室中段存在温度激增。在直流喷注条件下,相较于六角型骨架,螺旋型骨架更能提高燃烧室湍流强度。在旋流喷注条件下,氧化剂旋流强度对湍流强度提升起主导作用,骨架结构影响较小。

     

  • 图 1  固-气掺混燃烧器结构及试验图像

    Figure 1.  Schematic of solid-gaseous hybrid combustor and experiment images

    图 2  螺旋ABS骨架增强石蜡燃料结构(单位:mm)

    Figure 2.  Helical ABS skeleton reinforced paraffin fuel (unit: mm)

    图 3  六角型ABS骨架增强石蜡燃料结构(单位:mm)

    Figure 3.  Hexagonal ABS skeleton reinforced paraffin fuel (unit: mm)

    图 4  骨架增强石蜡燃料燃烧图像及退移速率

    Figure 4.  Skeleton reinforced paraffin fuel combustion images and regression rate

    图 5  非预混燃烧模型中燃烧温度与掺混比关系

    Figure 5.  Curve of temperature and mixture fraction in non-premixed combustion model

    图 6  58#石蜡和ABS退移速率随时间变化曲线

    Figure 6.  58# paraffin and ABS regression rate change curves with time

    图 7  计算域网格及内部结构

    Figure 7.  Computational mesh and internal structure

    图 8  不同喷注工况下燃烧室xy截面温度分布云图

    Figure 8.  Temperature distribution on xy section of combustion chamber on different injection conditions

    图 9  不同喷注工况下燃烧室xy截面氧化剂分布云图

    Figure 9.  Oxidant distribution on xy section of combustion chamber on different injection conditions

    图 10  燃烧室xy截面流线分布

    Figure 10.  Streamline distribution on xy section of combustion chamber

    图 11  轴向各平面平均温度变化曲线

    Figure 11.  Average temperature change curves on each plane in the axial direction

    图 12  不同工况在不同时刻燃烧室温度分布云图

    Figure 12.  Temperature distribution of combustion chamber at different time on different conditions

    图 13  不同工况在不同时刻燃烧室温度曲线

    Figure 13.  Combustion chamber temperature curves at different times on different conditions

    图 14  不同工况在10 s时燃烧室轴向温度变化曲线

    Figure 14.  Axial temperature change curves of combustion chamber at 10 s on different conditions

    图 15  直流-螺旋工况中不同时刻螺纹槽流线分布

    Figure 15.  Streamlines distribution of the groove at different moments on direct flow-helical condition

    图 16  直流-六角工况在不同时刻轴向温度变化曲线

    Figure 16.  Axial temperature change curves at different moments on direct flow-hexagonal conditions

    表  1  幂律敏感性模型参数

    Table  1.   Power law sensitivity model parameters

    材料an
    ABS0.03040.681
    石蜡0.1170.62
    下载: 导出CSV

    表  2  不同骨架增强石蜡燃料在不同时刻质量消耗量

    Table  2.   Mass consumption versus time for different skeleton reinforced paraffin fuel

    骨架结构时刻/s石蜡消耗量/
    (g/s)
    骨架消耗量/
    (g/s)
    总消耗量/
    (g/s)
    六角型
    骨架
    00.269900.2699
    50.17520.03830.2136
    100.15440.03830.1927
    250.09150.03840.1299
    4200.04910.0491
    螺旋形
    骨架
    00.269900.2699
    50.17580.03480.2105
    100.14610.03720.1833
    250.07330.04290.1162
    4200.05780.0578
    下载: 导出CSV
  • [1] 蔡国飙. 固液混合火箭发动机技术综述与展望[J]. 推进技术,2012,33(6): 831-839. doi: 10.13675/j.cnki.tjjs.2012.06.011

    CAI Guobiao. Development and application of hybrid rocket motor technology: overview and prospect[J]. Journal of Propulsion Technology,2012,33(6): 831-839. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.06.011
    [2] MEAD F B. Early developments in hybrid propulsion technology at the Air Force Rocket Propulsion Laboratory[R].San Diego, US: 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1995.
    [3] AUSTIN B, HEISTER S, DAMBACH E, et al. Variable thrust, multiple start hybrid motor solutions for missile and space applications[R]. Nashville, US: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2010.
    [4] CALABRO M. Overview on hybrid propulsion[J]. Progress in Propulsion Physics,2011,2: 353-374.
    [5] KUO K K, CHIAVERINI M J. Fundamentals of hybrid rocket combustion and propulsion[M]. Reston, Viginia, US: AIAA, 2015
    [6] CONNELL T L,RISHA G A,YETTER R A,et al. Boron and polytetrafluoroethylene as a fuel composition for hybrid rocket applications[J]. Journal of Propulsion and Power,2015,31(1): 373-385. doi: 10.2514/1.B35200
    [7] CIOTTOLI P P,MALPICA G R,LAPENNA P E,et al. CSP-based chemical kinetics mechanisms simplification strategy for non-premixed combustion: an application to hybrid rocket propulsion[J]. Combustion and Flame,2017,186: 83-93.
    [8] 杨玉新,胡春波,何国强,等. 固液混合火箭发动机中的关键技术及其发展[J]. 宇航学报,2008,29(5): 1616-1621. doi: 10.3873/j.issn.1000-1328.2008.05.029

    YANG Yuxin,HU Chunbo,HE Guoqiang,et al. Key technology of hybrid rocket motor and its development[J]. Journal of Astronautics,2008,29(5): 1616-1621. (in Chinese) doi: 10.3873/j.issn.1000-1328.2008.05.029
    [9] RASHKOVSKIY S A,YAKUSH S E. Numerical simulation of low-melting temperature solid fuel regression in hybrid rocket engines[J]. Acta Astronautica,2020,176: 710-716. doi: 10.1016/j.actaastro.2020.05.002
    [10] LESTRADE J Y,ANTHOINE J,LAVERGNE G. Liquefying fuel regression rate modeling in hybrid propulsion[J]. Aerospace Science and Technology,2015,42: 80-87. doi: 10.1016/j.ast.2014.11.015
    [11] KARABEYOGLU M A,ALTMAN D,CANTWELL B J. Combustion of liquefying hybrid propellants: Part 1 general theory[J]. Journal of Propulsion and Power,2002,18(3): 610-620. doi: 10.2514/2.5975
    [12] KARABEYOGLU M A,CANTWELL B J. Combustion of liquefying hybrid propellants: Part 2 stability of liquid films[J]. Journal of Propulsion and Power,2002,18(3): 621-630. doi: 10.2514/2.5976
    [13] CHIAVERINI M J, KUO K K. Fundamentals of hybrid rocket combustion and propulsion[M]. Reston, Viginia, US: AIAA, 2007
    [14] KARABEYOGLU M, CANTWELL B J, ALTMAN D. Development and testing of paraffin-based hybrid rocket fuels[R].Salt Lake City, US: 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011.
    [15] MCCULLEY J, BATH A, WHITMORE S. Design and testing of fdm manufactured paraffin-ABS hybrid rocket motors[R].Atlanta, US: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2012.
    [16] ARMOLD D, BOYER J E, KUO K, et al. Test of hybrid rocket fuel grains with swirl patterns fabricated using rapid proto- typing technology[R].San Jose, US: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013.
    [17] BISIN R, VERGA A, BRUSCHI D, et al. Strategies for paraffin-based fuels reinforcement: 3d printing and blending with polymers[R].Reston, Viginia, US: AIAA Propulsion and Energy 2021 Forum, 2021.
    [18] WANG Zezhong,LIN Xin,LI Fei,et al. Combustion performance of a novel hybrid rocket fuel grain with a nested helical structure[J]. Aerospace Science and Technology,2020,97: 105613.1-105613.8.
    [19] KNUTH W, GRAMER D, CHIAVERINI M, et al. Development and testing of a vortex-driven, high-regression rate hybrid rocket engine[R].Cleveland, US: 34th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference and Exhibit, 1998.
    [20] TAKASHI T, YUASA S, YAMAMOTO K. Effects of swirling oxidizer flow on fuel regression rate of hybrid rockets[R].Los Angeles, US: 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1999.
    [21] 王印,胡松启,刘林林,等. 含石蜡燃料在固液混合发动机中的燃烧效率研究[J]. 推进技术,2020,41(8): 1807-1813. doi: 10.13675/j.cnki.tjjs.190296

    WANG Yin,HU Songqi,LIU Linlin,et al. Combustion efficiency of paraffin-based fuels in hybrid rocket motor[J]. Journal of Propulsion Technology,2020,41(8): 1807-1813. (in Chinese) doi: 10.13675/j.cnki.tjjs.190296
    [22] 王明鉴,杜新,何洪庆,等. 燃烧室结构对固液火箭发动机燃烧与流动的影响研究[J]. 固体火箭技术,2005,28(4): 249-252. doi: 10.3969/j.issn.1006-2793.2005.04.004

    WANG Mingjian,DU Xin,HE Hongqing,et al. Effects of combustion chamber structure on combustion and flow of hybrid motor[J]. Journal of Solid Rocket Technology,2005,28(4): 249-252. (in Chinese) doi: 10.3969/j.issn.1006-2793.2005.04.004
    [23] 王鹏飞,田辉,俞南嘉,等. 药柱含扰流板H202/HTPB固液火箭发动机两相流数值计算[J]. 航空动力学报,2013,28(11): 2621-2626.

    WANG Pengfei,TIAN Hui,YU Nanjia,et al. Two-phase flow numerical calculation of H2O2/HTPB hybrid rocket engine with diaphragm in grain[J]. Journal of Aerospace Power,2013,28(11): 2621-2626. (in Chinese)
    [24] TIAN Hui,LI Yuelong,LI Chengen,et al. Regression rate characteristics of hybrid rocket motor with helical grain[J]. Aerospace Science and Technology,2017,68(9): 90-103.
    [25] 张子相,武毅,卢健程,等. 3D打印骨架增强石蜡燃料燃烧机理实验研究[J]. 推进技术,2022,43(5): 365-372. doi: 10.13675/j.cnki.tjjs.200992

    ZHANG Zixiang,WU Yi,LU Jiancheng,et al. Experimental study on combustion mechanism of 3dprinting skeleton enhanced paraffin fuel[J]. Journal of Propulsion Technology,2022,43(5): 365-372. (in Chinese) doi: 10.13675/j.cnki.tjjs.200992
    [26] CARMINE C,GIUSEPPE G,RAFFAELE S. Self-consistent surface-temperature boundary condition for liquefying-fuel-based hybrid rockets internal-ballistics simulation[J]. International Journal of Heat and Mass Transfer,2021,169: 120928.1-120928.21.
    [27] RANUZZI G, CARDILLO D, INVIGORITO M. Numerical investigation of a N2O-paraffin hybrid rocket engine combusting flowfield[R].Krakow, Poland: 6th European Conference for Aeronautics and Space Sciences (EUCASS), 2015.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  200
  • HTML浏览量:  26
  • PDF量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 网络出版日期:  2023-06-16

目录

    /

    返回文章
    返回