留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受限空间内压电风扇气动阻力的预测方法

李娜 刘洋 高吉刚 黄再兴 李恒超

李娜, 刘洋, 高吉刚, 等. 受限空间内压电风扇气动阻力的预测方法[J]. 航空动力学报, 2023, 38(9):2204-2213 doi: 10.13224/j.cnki.jasp.20210715
引用本文: 李娜, 刘洋, 高吉刚, 等. 受限空间内压电风扇气动阻力的预测方法[J]. 航空动力学报, 2023, 38(9):2204-2213 doi: 10.13224/j.cnki.jasp.20210715
LI Na, LIU Yang, GAO Jigang, et al. Prediction for aerodynamic drag of piezoelectric fan in confined space[J]. Journal of Aerospace Power, 2023, 38(9):2204-2213 doi: 10.13224/j.cnki.jasp.20210715
Citation: LI Na, LIU Yang, GAO Jigang, et al. Prediction for aerodynamic drag of piezoelectric fan in confined space[J]. Journal of Aerospace Power, 2023, 38(9):2204-2213 doi: 10.13224/j.cnki.jasp.20210715

受限空间内压电风扇气动阻力的预测方法

doi: 10.13224/j.cnki.jasp.20210715
基金项目: 机械结构力学及控制国家重点实验室开放课题(MCMS-E-0220G01)
详细信息
    作者简介:

    李娜(1980-),女,副教授,博士,主要从事能源领域流动与传热方向的研究工作。E-mail:linanjut@njtech.edu.cn

  • 中图分类号: V211.3

Prediction for aerodynamic drag of piezoelectric fan in confined space

  • 摘要:

    围绕受限空间压电风扇的气动阻力、振幅响应及其与非定常流场的内在关联机制和规律这一核心问题开展深入的理论分析和数值模拟研究,分别基于牛顿内摩擦定律和附加流体质量力作用机制,建立了四周空间受限的压电风扇振动薄片一阶弯曲响应瞬时气动阻力的理论模型,并进一步建立了其振幅响应的预测方法。经过验证,预测模型的预测结果与试验获得规律基本一致。当空间受限间隙小于5 mm时的振幅将随间隙的减小而急剧减小,当间隙大于20 mm时的空间受限效应基本可以忽略。

     

  • 图 1  压电风扇几何模型示意图(单位:mm)

    Figure 1.  Schematic diagram of the piezoelectric fan geometric model (unit: mm)

    图 2  网格模型示意图(向上至最大位移处)

    Figure 2.  Meshed model (up-most stroke)

    图 3  速度及压力分布图(自由空间及不同受限空间内压电风扇所激励的空气流场)

    Figure 3.  Velocity and pressure distribution (flow field induced by piezoelectric fan in free space and confined space)

    图 4  准稳态发展阶段自由空间与不同受限空间情况下振动薄片所受流体力的对比情况

    Figure 4.  Comparison of the fluid force on the cantilever in free space and confined spaces at the quasi-steady stage of development

    图 5  压电风扇模型坐标系统示意图

    Figure 5.  Coordinate description of piezoelectric fan

    图 6  不同受限形式下流体力的预测与CFD结果对比

    Figure 6.  Comparison between prediction results and CFD results of fluid force in different confined spaces

    图 7  不同壁面间隙时流体力情况

    Figure 7.  Fluid force with each gap sizes

    图 8  振幅随受限空间壁面间隙的变化规律

    Figure 8.  Amplitude relation with the gap size

  • [1] ARUM-KUMAR C M,MUKESH-KUMAR P C. Review on electronics cooling systems[J]. Advances in Natural and Applied Sciences,2017,11(8): 271-279.
    [2] SUFIAN S F,ABDULLAH M Z. Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink[J]. Microelectronics Reliability,2017,68: 39-50. doi: 10.1016/j.microrel.2016.11.011
    [3] LASACE C J M,SIMONS R E. Advances in high-performance cooling for electronics[J]. Electronics Cooling,2005,11(4): 22-39.
    [4] MASSPURO M. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs: a review[J]. Microelectronics Reliability,2016,63: 342-353. doi: 10.1016/j.microrel.2016.06.008
    [5] OH M H,PARK S H,KIM Y H,et al. 3D flow structure around a piezoelectrically oscillating flat plate[J]. European Journal of Mechanics: B Fluids,2018,67: 249-258. doi: 10.1016/j.euromechflu.2017.09.002
    [6] ACIKALIN T,WAIT S M,GARIMELLA S V,et al. Experimental investigation of the thermal performance of piezoelectric fans[J]. Heat Transfer Engineering,2004,25(1): 4-14. doi: 10.1080/01457630490248223
    [7] TAN L,ZHANG J Z,TAN X M. Numerical investigation of convective heat transfer on a vertical surface due to resonating cantilever beam[J]. International Journal of Thermal Sciences,2014,80: 93-107. doi: 10.1016/j.ijthermalsci.2014.02.004
    [8] FAIRUZ Z M,SUFIAN S F,ABDULLAH M Z,et al. Effect of piezoelectric fan mode shape on the heat transfer characteristics[J]. International Communications in Heat and Mass Transfer,2014,52: 140-151. doi: 10.1016/j.icheatmasstransfer.2013.11.013
    [9] KIMBER M, SUZUKI K, KITSUNAI N, et al. Quantification of piezoelectric fan flow rate performance and experimental identification of installation effects[R]. Orlando, FL, US: 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008.
    [10] KIMBER M,GARIMELLA S V,RAMAN A. Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers[J]. ASME Journal of Heat Transfer,2007,129: 1168-1176. doi: 10.1115/1.2740655
    [11] 谭蕾,谭晓茗,张靖周. 压电风扇激励非定常流动和换热特性数值研究[J]. 航空学报,2013,34(6): 1277-1284. doi: 10.7527/S1000-6893.2013.0074

    TAN Lei,TAN Xiaoming,ZHANG Jingzhou. Numerical investigation on unsteady flow and heat transfer characteristics of piezoelectric fan[J]. Acta Aeronautica et Astronautica sinica,2013,34(6): 1277-1284. (in Chinese) doi: 10.7527/S1000-6893.2013.0074
    [12] 李鑫郡,张靖周,谭晓茗. 存在横流时双压电风扇激励传热特性[J]. 航空学报,2018,39(1): 103-112.

    LI Xinjun,ZHANG Jingzhou,TAN Xiaoming. Characteristics of heat transfer with dual piezoelectric fans in presence of cross flow[J]. Acta Aeronautica et Astronautica sinica,2018,39(1): 103-112. (in Chinese)
    [13] KIMBER M,LONERGAN R,GARIMELLA S V. Experimental study of aerodynamic damping in arrays of vibrating cantilevers[J]. Journal of Fluids and Structures,2009,25(8): 1334-1347. doi: 10.1016/j.jfluidstructs.2009.07.003
    [14] KIMBER M,SUZUKI K,KITSUNAI N,et al. Pressure and flow rate performance of piezoelectric fans[J]. Transactions on Components and Packaging Technology,2009,32(4): 766-775. doi: 10.1109/TCAPT.2008.2012169
    [15] LI N,LIU Y,GAO J G,et al. Aerodynamic damping and amplitude response of piezoelectric fans in free and confined space[J]. Engineering Applications of Computational Fluid Mechanics,2022,16(1): 161-176. doi: 10.1080/19942060.2021.2005683
    [16] EASTMAN A,KIEFER J,KIMBER M. Thrust measurements and flow field analysis of a piezoelectrically actuated oscillating cantilever[J]. Experiments in Fluids,2012,53(5): 1533-1543. doi: 10.1007/s00348-012-1373-6
    [17] ACIKALIN T,GARIMELLA S V. Analysis and prediction of the thermal performance of piezoelectrically actuated fans[J]. Heat Transfer Engineering,2009,30(6): 487-498. doi: 10.1080/01457630802529115
    [18] LIN C N. Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan[J]. International Journal of Heat Mass Transfer,2012,55(11): 3043-3053.
    [19] LI X J,ZHANG J Z,TAN X M. Experimental and numerical investigations on convective heat transfer of dual piezoelectric fans[J]. Science China (Technological Sciences),2018,61(2): 232-241. doi: 10.1007/s11431-017-9084-2
    [20] 李鑫郡,张靖周,谭晓茗. 单个压电风扇传热特性[J]. 航空学报,2017,38(7): 205-214.

    LI Xinjun,ZHANG Jingzhou,TAN Xiaoming. Characteristics of heat transfer with single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica,2017,38(7): 205-214. (in Chinese)
    [21] CHOI M,CIERPKA C,KIM Y H. Vortex formation by a vibrating cantilever[J]. Journal of Fluids and Structures,2012,31: 67-78. doi: 10.1016/j.jfluidstructs.2012.03.004
    [22] FACCI A L,PORFIRI M. Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids[J]. Journal of Fluids and Structures,2013,38: 205-222. doi: 10.1016/j.jfluidstructs.2012.11.006
    [23] KIM Y H,WERELEY S T,CHUN C H. Phase-resolved flow field produced by a vibrating cantilever plate between two endplates[J]. Physics of Fluids,2004,16(1): 145-162. doi: 10.1063/1.1630796
    [24] BIDKAR R A,KIMBER M,RAMAN A,et al. Nonlinear aerodynamic damping of sharp-edged beams at low keulegan-carpenter numbers[J]. Journal of Fluid Mechanics,2009,634: 269-289. doi: 10.1017/S0022112009007228
    [25] KEULEGAN G H,CARPENTER L H. Forces on cylinders and plates in an oscillating fluid[J]. Journal of Research of the National Bureau of Standards,1958,60(5): 423-440. doi: 10.6028/jres.060.043
    [26] EASTMAN A,KIMBER M. Aerodynamic damping of sidewall bounded oscillating cantilevers[J]. Journal of Fluids and Structures,2014,51: 148-160. doi: 10.1016/j.jfluidstructs.2014.07.016
  • 加载中
图(8)
计量
  • 文章访问数:  170
  • HTML浏览量:  76
  • PDF量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 网络出版日期:  2022-12-20

目录

    /

    返回文章
    返回