留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

推力矢量型V/STOL飞行器短距降落控制策略设计

龚正 李沛晋 王子安 周涛 陈永亮 曲晓雷

龚正, 李沛晋, 王子安, 等. 推力矢量型V/STOL飞行器短距降落控制策略设计[J]. 航空动力学报, 2023, 38(8):1875-1888 doi: 10.13224/j.cnki.jasp.20210718
引用本文: 龚正, 李沛晋, 王子安, 等. 推力矢量型V/STOL飞行器短距降落控制策略设计[J]. 航空动力学报, 2023, 38(8):1875-1888 doi: 10.13224/j.cnki.jasp.20210718
GONG Zheng, LI Peijin, WANG Zian, et al. Design of short landing control strategy for thrust-vectored V/STOL aircraft[J]. Journal of Aerospace Power, 2023, 38(8):1875-1888 doi: 10.13224/j.cnki.jasp.20210718
Citation: GONG Zheng, LI Peijin, WANG Zian, et al. Design of short landing control strategy for thrust-vectored V/STOL aircraft[J]. Journal of Aerospace Power, 2023, 38(8):1875-1888 doi: 10.13224/j.cnki.jasp.20210718

推力矢量型V/STOL飞行器短距降落控制策略设计

doi: 10.13224/j.cnki.jasp.20210718
基金项目: 国家自然科学基金(11402115); 江苏高校优势学科建设工程资助项目
详细信息
    作者简介:

    龚正(1981-),男,博士,主要从事飞机飞行动力学与控制研究

    通讯作者:

    王子安(1994-),男,博士,主要从事飞机飞行动力学与控制研究。E-mail:wangzian@nuaa.edu.cn

  • 中图分类号: V249.1

Design of short landing control strategy for thrust-vectored V/STOL aircraft

  • 摘要:

    针对推力矢量型垂直/短距起降(V/STOL)飞行的短距降落(SRVL)过程,进行了纵向动力学建模。基于飞机的减速性能与轨迹、速度稳定性,采用可达平衡集方法,构建了策略参数的边界,制定了参数选取标准,设计一种制定短距降落策略的方法。根据降落策略,分段进行了相应的控制框架建立,内环采用动态逆控制律,并引用一种基于频域尺度的效能分配准则进行控制分配设计。基于蒙特卡洛仿真法,对降落策略的鲁棒性进行了仿真验证,结果表明:针对不同降落阶段的策略参数边界制定方法能够满足该阶段的任务需求,且这些参数边界对短距降落策略制定有着明确的参考意义。以L1自适应控制器作为内环增稳控制器,所设计的短距降落策略使得飞行器在着陆过程中有着良好的轨迹鲁棒性。

     

  • 图 1  矢量喷管-升力风扇飞行器模型

    Figure 1.  Vector nozzle-lift fan aircraft model

    图 2  动力系统示意图

    1 升力风扇和辅助电动机动力子系统; 2 主进气道;3 辅助进气道; 4 主涵道风扇和主电动机动力子系统; 5 发动机筒体; 6 滚转喷管; 7 滚转控制调节机构; 8 三轴承矢量喷管。

    Figure 2.  Diagram of power system

    图 3  计算流程图

    Figure 3.  Calculation flow chart

    图 4  降落接地时刻飞行状态限制区域

    Figure 4.  Flight status restricted area at the time of landing ground

    图 5  减速性能分析图

    Figure 5.  Deceleration performance analysis diagram

    图 6  航迹稳定性分析图(γ=−4°)

    Figure 6.  Track stability analysis diagram (γ=−4°)

    图 7  航迹倾角分析图(θ=3°)

    Figure 7.  Track angle analysis diagram (θ=3°)

    图 8  短距降落分段示意图

    Figure 8.  Schematic diagram of SRVL

    图 9  短距降落策略制定流程图

    Figure 9.  SRVL strategy flowchart

    图 10  短距降落策略图

    Figure 10.  SRVL strategy diagram

    图 11  短距降落控制框架图

    Figure 11.  SRVL control frame diagram

    图 12  控制分配示意图

    Figure 12.  Control distribution diagram

    图 13  标称状态飞行轨迹仿真结果

    Figure 13.  Simulation results of flight trajectory at nominal state

    图 14  标称状态飞行状态仿真结果

    Figure 14.  Flight state simulation results of flight trajectory at nominal state

    图 15  蒙特卡洛仿真结果图

    Figure 15.  Monte Carlo simulation results diagram

    图 16  飞行器航迹图

    Figure 16.  Aircraft track map

    表  1  V/STOL飞行器主要参数

    Table  1.   Main parameters of V/STOL aircraft

    参数数值
    质量/kg13
    巡航速度/(m/s)30
    巡航高度/m<100
    下载: 导出CSV

    表  2  短距降落控制目标

    Table  2.   SRVL control target

    参数控制目标
    接地速度 ${V_3}$/(m/s)$\Delta {V_3} \leqslant \pm 1$
    落点(${X_{{\rm{lat}}} },{Y_{{\rm{lon}}} }$ )/m${\varDelta _{x,y} } < 5$
    下载: 导出CSV

    表  3  主要参数摄动范围

    Table  3.   Perturbation range of main parameters

    参数不确定范围/%
    升力线斜率$ \pm 10$
    侧力操纵导数$ \pm 10$
    滚转交叉操纵导数$ \pm 10$
    俯仰操纵导数$ \pm 10$
    偏航操纵导数$ \pm 10$
    偏航阻尼导数$ \pm 10$
    x轴重心位置$ \pm 10$
    y轴转动惯量$ \pm 10$
    升力操纵导数$ \pm 10$
    滚转静稳定性导数$ \pm 10$
    滚转阻尼导数$ \pm 10$
    俯仰阻尼导数$ \pm 10$
    偏航交叉操纵导数$ \pm 10$
    阻力操纵导数$ \pm 10$
    俯仰静稳定性导数$ \pm 10$
    z轴转动惯量$ \pm 10$
    侧向静稳定性导数$ \pm 10$
    滚转操纵导数$ \pm 10$
    滚转交叉阻尼导数$ \pm 10$
    偏航静稳定性导数$ \pm 10$
    偏航交叉阻尼导数$ \pm 10$
    升力风扇拉力系数$ \pm 10$
    x轴转动惯量$\pm 10$
    下载: 导出CSV
  • [1] 吴文海,高阳,王子健,等. 基于LADRC的舰载V/STOL飞机短距起飞性能优化[J]. 航空学报,2019,40(6): 131-142. doi: 10.7527/S1000-6893-2019.22772

    WU Wenhai,GAO Yang,WANG Zijian,et al. Optimization of short take off performance for carrier based V/STOL aircraft via LADRC method[J]. Acta Aeronautica et Astronautica Sinica,2019,40(6): 131-142. (in Chinese) doi: 10.7527/S1000-6893-2019.22772
    [2] 王衍洋,张守臣,刘志敏,等. 推力矢量飞机的起飞性能研究[J]. 飞行力学,2000,18(1): 19-21. doi: 10.3969/j.issn.1002-0853.2000.01.005

    WANG Yanyang,ZHANG Shouchen,LIU Zhimin,et al. The influence of thrust vectoring on aircraft take-off performance[J]. Flight Dynamics,2000,18(1): 19-21. (in Chinese) doi: 10.3969/j.issn.1002-0853.2000.01.005
    [3] 彭润艳,王和平,林宇. 带升力风扇飞机的短距起飞建模和仿真研究[J]. 计算机仿真,2008,25(4): 46-48,64. doi: 10.3969/j.issn.1006-9348.2008.04.012

    PENG Runyan,WANG Heping,LIN Yu. Modeling and simulation of advanced short takeoff aircraft with lift-fan[J]. Computer Simulation,2008,25(4): 46-48,64. (in Chinese) doi: 10.3969/j.issn.1006-9348.2008.04.012
    [4] 陈坤. STOVL无人飞行器飞行动力学分析、控制律设计及验证[D]. 南京: 南京航空航天大学, 2016.

    CHEN Kun. STOVL unmanned aerial vehicle flight dynamic analysis, control law design and test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [5] SCOTT R. UK on a roll after F-35B landing trials[J]. Flight International, 2018, 194(5666): 16.
    [6] 张志冰,张秀林,王家兴,等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报,2021,42(8): 142-157. doi: 10.7527/S1000-6893.2021.25840

    ZHANG Zhibing,ZHANG Xiulin,WANG Jiaxing,et al. An IDLC landing control method of carrier tased aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica,2021,42(8): 142-157. (in Chinese) doi: 10.7527/S1000-6893.2021.25840
    [7] 罗飞,张军红,王博,等. 基于直接力的着舰航迹动态逆控制仿真研究[J]. 电光与控制,2021,28(9): 103-107. doi: 10.3969/j.issn.1671-637X.2021.09.022

    LUO Fei,ZHANG Junhong,WANG Bo,et al. Simulation research on direct-lift-control based NDI control of landing trajectory[J]. Electronics Optics & Control,2021,28(9): 103-107. (in Chinese) doi: 10.3969/j.issn.1671-637X.2021.09.022
    [8] KLEINBEKMAN I C,MITICI M,WEI P. Rolling-horizon electric vertical takeoff and landing arrival scheduling for on-demand urban air mobility[J]. Journal of Aerospace Information Systems,2020,17(3): 150-159. doi: 10.2514/1.I010776
    [9] WANG Zian,MAO Shengchen,GONG Zheng,et al. Energy efficiency enhanced landing strategy for manned eVTOLs using L1 adaptive control[J]. Symmetry,2021,13(11): 1-33.
    [10] 韩维,陈志刚,张勇,等. 飞翼布局无人机着舰飞行动力学分析[J]. 海军航空工程学院学报,2017,32(5): 421-425. doi: 10.7682/j.issn.1673-1522.2017.05.001

    HAN Wei,CHEN Zhigang,ZHANG Yong,et al. Analysis of the flight dynamicduring flying wing uav carrier landing[J]. Journal of Naval Aeronautical and Astronautical University,2017,32(5): 421-425. (in Chinese) doi: 10.7682/j.issn.1673-1522.2017.05.001
    [11] 方城金. 关於飞机速度稳定性的判别式问题[J]. 飞行力学,1983,1(2): 1-17. doi: 10.13645/j.cnki.f.d.1983.02.001

    FANG Chengjin. The discriminant problem of aircraft velocity stability[J]. Flight Dynamics,1983,1(2): 1-17. (in Chinese) doi: 10.13645/j.cnki.f.d.1983.02.001
    [12] 王钱生. 关于舰载机着舰下沉速度的初步研究[J]. 飞机设计,2007,28(3): 1-6. doi: 10.3969/j.issn.1673-4599.2007.03.001

    WANG Qiansheng. A preliminary research of sinking velocity for carrier-based aircraft[J]. Aircraft Design,2007,28(3): 1-6. (in Chinese) doi: 10.3969/j.issn.1673-4599.2007.03.001
    [13] 赵荣,王立新,徐王强. 小型飞机自动着舰系统设计准则适用性分析[J]. 北京航空航天大学学报,2017,43(12): 2488-2496. doi: 10.13700/j.bh.1001-5965.2016.0857

    ZHAO Rong,WANG Lixin,XU Wangqiang. Analysis of design principle adaptability to automatic carrier landing system of light plane[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(12): 2488-2496. (in Chinese) doi: 10.13700/j.bh.1001-5965.2016.0857
    [14] 龚正. 先进飞行器非定常气动力建模、控制律设计及验证方法研究[D]. 南京: 南京航空航天大学, 2011.

    GONG Zheng. Research on unsteady aerodynamic modeling, control law design and clearance for advanced aerospace vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
    [15] 叶辉. 推力矢量飞机过失速机动的鲁棒控制与边界保护[D]. 南京: 南京航空航天大学, 2016.

    YE Hui. Robust control and envelope protection for post-stall maneuver of TVC aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [16] GOMAN M G,KHRAMTSOVSKY A V,KOLESNIKOV E N. Evaluation of aircraft performance and maneuverability by computation of attainable equilibrium sets[J]. Journal of Guidance, Control, and Dynamics,2008,31(2): 329-339. doi: 10.2514/1.29336
    [17] 中国人民解放军总装备部. 舰载飞机规范(飞行品质): GJB 3719-99 [S]. 北京: 中国人民解放军总装备部, 1999: 16-19.
    [18] 俞志明,陈仁良,孔卫红. 倾转四旋翼飞行器倾转过渡走廊分析方法[J]. 北京航空航天大学学报,2020,46(11): 2106-2113. doi: 10.13700/j.bh.1001-5965.2019.0594

    YU Zhiming,CHEN Renliang,KONG Weihong. Analysis method for conversion corridor of quad tilt rotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(11): 2106-2113. (in Chinese) doi: 10.13700/j.bh.1001-5965.2019.0594
    [19] 曹芸芸,陈仁良. 倾转旋翼飞行器发动机短舱倾转角度-速度包线分析[J]. 航空动力学报,2011,26(10): 2174-2180. doi: 10.13224/j.cnki.jasp.2011.10.011

    CAO Yunyun,CHEN Renliang. Investigation on nacelle conversion envelope analysis method of tiltrotor aircraft[J]. Journal of Aerospace Power,2011,26(10): 2174-2180. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.10.011
    [20] SHAKARIAN A. Application of Monte-Carlo techniques to the 757/767 autoland dispersion analysis by simulation [R]. AIAA 83-2193, 1983.
    [21] WILLIAMS P S. A Monte Carlo dispersion analysis of the X-33 simulation software [R]. AIAA 2001-4067, 2001.
    [22] 张超,陈磊,陈宗基,等. 基于视觉的UCAV自主着陆蒙特卡洛仿真研究[J]. 系统仿真学报,2010,22(9): 2235-2240. doi: 10.16182/j.cnki.joss.2010.09.012

    ZHANG Chao,CHEN Lei,CHEN Zongji,et al. Monte Carlo simulation for vision-based autonomous landing of unmanned combat aerial vehicles[J]. Journal of System Simulation,2010,22(9): 2235-2240. (in Chinese) doi: 10.16182/j.cnki.joss.2010.09.012
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  280
  • HTML浏览量:  146
  • PDF量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 网络出版日期:  2023-01-09

目录

    /

    返回文章
    返回