Scramjet free-jet test process at Ma10 conditions
-
摘要:
基于中国空气动力研究与发展中心的高焓激波风洞(FD-14A)在毫秒量级试验时间内,开展了模拟飞行马赫数为10,动压为30 kPa条件下的超燃冲压发动机自由射流试验研究。采用高速纹影和高速摄影捕捉了进气道唇口波系和燃烧室火焰的时间发展历程,结合发动机壁面压力和热流密度数据,分析了该工况下发动机的工作过程。测量了多种燃料当量比下的发动机壁面压力和热流密度,试验结果表明:在当量比0.50~1.37的宽范围下均实现了可靠点火和稳定燃烧。
Abstract:Scramjet free-jet tests were conducted in milliseconds in the high-enthalpy shock wave wind tunnel (FD-14A) of China Aerodynamics Research and Development Center at the conditions of replicating flight Mach number 10 and dynamic pressure of 30 kPa. High-speed schlieren and high-speed photography were employed to record the shock waves at the inlet lip and flame spreading process in the combustor, respectively. The free jet test process was analyzed by the optical measurement, scramjet wall pressures and heat fluxes. The ignition and combustion tests were conducted with different equivalent ratios of hydrogen. Distributions of pressures and heat fluxes along the engine wall indicated that ignition and stable combustion were achieved within a wide range of fuel equivalent ratios from 0.50 to 1.37.
-
Key words:
- scramjet /
- high Mach number /
- ignition /
- combustion /
- test process
-
表 1 FD-14A高焓激波风洞喷管出口气流条件
Table 1. Parameters of FD-14A high-enthalpy shock wave wind tunnel
Ma q/kPa T0/K p0/MPa 10 30 3580 30 -
[1] LAURIE A M, CATHERINE B, GRIFFIN P C, et al. Overview with results and lessons learned of the X-43A Mach 10 flight[R]. AIAA 2005-3336, 2005. [2] STALKER R J,PALL A,MEE D J,et al. Scramjets and shock tunnels: the Queensland experience[J]. Progress in Aerospace Sciences,2005,41(6): 471-513. doi: 10.1016/j.paerosci.2005.08.002 [3] BARTH J E,WISE D J,WHEATLEY V,et al. Tailored fuel injection for performance enhancement in a Mach 12 scramjet engine[J]. Journal of Propulsion and Power,2019,35(1): 72-86. doi: 10.2514/1.B36794 [4] DOHERTY L J,SMART M K,MEE D J. Experimental testing of an airframe-integrated three-dimensional scramjet at Mach 10[J]. AIAA Journal,2015,53(11): 3196-3206. doi: 10.2514/1.J053785 [5] DOHERTY L J, SMART M K, MEE D J. Design of an airframe integrated 3-D scramjet and experimental results at Mach 10 flight condition[R]. AIAA 2012-5910, 2012. [6] DOHERTY L J, SMART M K, MEE D J. Measurement of three-components of force on an airframe integrated scramjet at Mach 10[R]. AIAA 2015-3523, 2015. [7] LANDSBERG W O,GIBBONS N N,WHEATLEY V,et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power,2018,34(3): 578-589. doi: 10.2514/1.B36772 [8] CURRAN D, WHEATLEY V, SMART M K. Investigation of combustion mode control in a Mach 8 shape-transitioning scramjet[R]. AIAA 2018-5380, 2018. [9] LANDSBERG W O,WHEATLEY V,SMART M K,et al. Performance of high Mach number scramjets-tunnel vs flight[J]. Acta Astronautica,2018,146: 103-110. doi: 10.1016/j.actaastro.2018.02.031 [10] CHAN W,RAZZAQI S A,TURNER J C,et al. Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5[J]. Journal of Propulsion and Power,2018,34(4): 844-852. doi: 10.2514/1.B36652 [11] TAKAHASHI M, KOMURO T, SATO K, et al. Effect of combustor shape on scramjet characteristics at hypervelocity condition over Mach 10 flight[R]. AIAA 2006-8024, 2006. [12] TAKAHASHI M, KOMURO T, SATO K, et al. Improvement of scramjet combustor performance at hypervelocity condition over Mach 10 flight[R]. AIAA 2008-2549, 2008. [13] 邓维鑫, 邢建文, 欧阳浩, 等. 高马赫数超燃冲压发动机试验研究[R]. 四川 绵阳: 第十二届全国高超声速科技学术会议, 2019. [14] 吴里银, 孔小平, 李贤, 等. 马赫数10超燃发动机激波风洞试验研究[R]. 四川 绵阳: 第十二届全国高超声速科技学术会议, 2019. [15] 欧阳浩, 邓维鑫, 邢建文, 等. 飞行Ma 8条件氢燃料与碳氢燃料燃烧特性对比试验研究[R]. 福建 厦门: 第十九届全国激波与激波管学术会议, 2020. [16] 欧阳浩, 邓维鑫, 邢建文, 等. 飞行Ma10条件燃烧特性试验研究[R]. 福建厦门: 第十九届全国激波与激波管学术会议, 2020. [17] 张晓源, 李进平, 张仕忠, 等. 10马赫冲压发动机爆轰驱动直连式试验方法[R]. 四川 绵阳: 第十二届全国高超声速科技学术会议, 2019 . [18] 邢建文, 韩亦宇. 超燃冲压发动机中的热力学非平衡效应[R]. 山东 威海: 第五届冲压发动机内外流耦合流动研讨会, 2021 . [19] 孔小平, 吴里银, 黄成扬, 等. 激波风洞Ma10自由射流冲压发动机试验模拟能力研究[R]. 山东 威海: 第五届冲压发动机内外流耦合流动研讨会, 2021. [20] 卢洪波,陈星,谌君谋,等. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃试验[J]. 气体物理,2019,4(5): 13-24.LU Hongbo,CHEN Xing,SHEN Junmou,et al. Flight condition achievement of Mach number 8 in a new shock tunnel of CAAA and its scramjet experimental investigation[J]. Physics of Gases,2019,4(5): 13-24. (in Chinese) [21] 姚轩宇,王春,喻江,等. JF12激波风洞高Mach数超燃冲压发动机试验研究[J]. 气体物理,2019,4(5): 25-31.YAO Xuanyu,WANG Chun,YU Jiang,et al. High-Mach-number scramjet engine tests in JF12 shock tunnel[J]. Physics of Gases,2019,4(5): 25-31. (in Chinese) [22] 张时空,李江,黄志伟,等. 高马赫数来流超燃冲压发动机燃烧流场分析[J]. 宇航学报,2017,38(1): 80-87.ZHANG Shikong,LI Jiang,HUANG Zhiwei,et al. Combustion flow field analysis of a scramjet engine at high Mach number[J]. Journal of Astronautics,2017,38(1): 80-87. (in Chinese) [23] 周建兴,汪颖. 高马赫数超燃冲压发动机性能数值研究[J]. 推进技术,2014,35(4): 433-441. doi: 10.13675/j.cnki.tjjs.2014.03.006ZHOU Jianxing,WANG Ying. Numerical investigation on performance of a high Mach number scramjet[J]. Journal of Propulsion Technology,2014,35(4): 433-441. (in Chinese) doi: 10.13675/j.cnki.tjjs.2014.03.006 [24] MATTHEW M,RICHARD G M,PETER A J. Scramjet experiments in an expansion tunnel: evaluated using a quasi-steady analysis technique[J]. AIAA Journal,2010,48(8): 1635-1646. doi: 10.2514/1.J050024