留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

端壁造型对高压涡轮封严流和主流的影响

谢柏森 张燕峰 张子卿

谢柏森, 张燕峰, 张子卿. 端壁造型对高压涡轮封严流和主流的影响[J]. 航空动力学报, 2023, 38(9):2241-2250 doi: 10.13224/j.cnki.jasp.20210721
引用本文: 谢柏森, 张燕峰, 张子卿. 端壁造型对高压涡轮封严流和主流的影响[J]. 航空动力学报, 2023, 38(9):2241-2250 doi: 10.13224/j.cnki.jasp.20210721
XIE Bosen, ZHANG Yanfeng, ZHANG Ziqing. Influence of endwall profiling on purge flow and mainstream flow in the high-pressure turbine[J]. Journal of Aerospace Power, 2023, 38(9):2241-2250 doi: 10.13224/j.cnki.jasp.20210721
Citation: XIE Bosen, ZHANG Yanfeng, ZHANG Ziqing. Influence of endwall profiling on purge flow and mainstream flow in the high-pressure turbine[J]. Journal of Aerospace Power, 2023, 38(9):2241-2250 doi: 10.13224/j.cnki.jasp.20210721

端壁造型对高压涡轮封严流和主流的影响

doi: 10.13224/j.cnki.jasp.20210721
基金项目: 国家自然科学基金(51876202); 国家重大科技专项(J2019-Ⅱ-0002-0022)
详细信息
    作者简介:

    谢柏森(1996-),男,硕士生,主要从事涡轮气动热力学研究

    通讯作者:

    张燕峰(1983-),男,研究员,博士,主要从事航空发动机气动热力学研究。E-mail:zhangyf@iet.cn

  • 中图分类号: V231.3

Influence of endwall profiling on purge flow and mainstream flow in the high-pressure turbine

  • 摘要:

    轮缘封严流在保证高压涡轮正常工作的同时也会与通道主流发生相互作用,导致掺混损失增加。以某典型高压涡轮叶栅为研究对象,采用数值模拟的方法,开展了轮缘封严流与主流相互影响机理研究。在此基础之上,探讨了非轴对称端壁对涡轮端区二次流的影响,在不同封严流量下详细分析了涡轮内部损失变化情况。在封严流流量比为0.7%时,非轴对称端壁减弱了端区横向压力梯度,削弱了封严泄漏涡和马蹄涡压力面分支横向迁移的驱动力,延缓了通道涡的形成;当封严流流量比增大到1.3%时,端区二次流的强度更大,非轴对称端壁对端区流动损失仍然具有明显的抑制作用。必须指出的是非轴对称端壁可以削弱叶片吸力面局部的逆压梯度,抑制角区流动分离。

     

  • 图 1  非轴对称端壁高度云图

    Figure 1.  Contours of non-axisymmetric endwall height

    图 2  轮缘封严结构

    Figure 2.  Rim seal

    图 3  计算模型及网格

    Figure 3.  Numerical model and the computational grid

    图 4  网格无关性验证

    Figure 4.  Grid independent verification

    图 5  数值模拟结果和实验结果对比

    Figure 5.  Comparison of results of numerical simulation and experiment

    图 6  叶栅进口涡结构

    Figure 6.  Vortex structures at the cascade inlet

    图 7  封严出流在叶片前缘处的流线分布图

    Figure 7.  Distribution of purge flow at leading edge of blade

    图 8  封严出流在叶片尾缘处的流线分布图

    Figure 8.  Distribution of purge flow at trailing edge of blade

    图 9  栅后0.4CX处流向涡量云图

    Figure 9.  Contour of dimensionless streamwise vorticity on plane 0.4CX downstream of blade

    图 10  叶片表面静压系数

    Figure 10.  Static pressure coefficient on the blade surface

    图 11  流向涡量云图

    Figure 11.  Contour of dimensionless streamwise vorticity

    图 12  叶栅通道内总压损失系数沿流向空间分布

    Figure 12.  Distribution along the flow direction of the total pressure loss coefficient in cascade passage

    图 13  叶栅出口总压损失系数

    Figure 13.  Total pressure loss coefficient at cascade outlet

    图 14  叶栅出口面平均总压损失系数

    Figure 14.  Average surface total pressure loss coefficient at cascade outlet

    表  1  叶型几何和气动参数

    Table  1.   Geometry and aerodynamics parameters of the blade

    参数数值
    弦长/mm61.08
    轴向弦长/mm43.92
    栅距/mm50.445
    叶高/mm120
    攻角/(°)1.4
    进口气流角/(°)44
    出口气流角/(°)18.47
    进口马赫数0.26
    出口马赫数0.89
    下载: 导出CSV
  • [1] SCOBIE J A,SANGAN C M,OWEN J M,et al. Review of ingress in gas turbines[J]. Journal of Engineering for Gas Turbines and Power,2016,138(12): 120801.1-120801.16.
    [2] ZHANG Ziqing,ZHANG Yingjie,DONG X,et al. Flow mechanism between purge flow and mainstream in different turbine rim seal configurations[J]. Chinese Journal of Aeronautics,2020,33(8): 2162-2175. doi: 10.1016/j.cja.2020.02.016
    [3] 杨帆,周莉,王占学. 轮缘封严气流与主流涡系交互作用的非定常数值研究[J]. 推进技术,2019,40(2): 315-323.

    YANG Fan,ZHOU Li,WANG Zhanxue. Unsteady numerial investigation on vortex interaction between rim seal flow and mainstream[J]. Journal of Propulsion Technology,2019,40(2): 315-323. (in Chinese)
    [4] SCHREWE S,WERSCHNIK H,SCHIFFER H P. Experimental analysis of the interaction between rim seal and main annulus flow in a low pressure two stage axial turbine[J]. Journal of Turbomachinery,2013,135(5): 1790-1791.
    [5] HU Jialin,DU Qiang,LIU Jun,et al. Flow development through HP&LP turbines: Part Ⅱ effects of the hub endwall secondary sealing air flow on the turbine’s mainstream flow[J]. Journal of Thermal Science,2017,26(4): 308-315. doi: 10.1007/s11630-017-0943-6
    [6] 贾惟. 轮毂封严对涡轮端区流动影响的数值研究[J]. 热能动力工程,2018,33(8): 20-29.

    JIA Wei. Numerical investigation of influence of rim seal purge flow on turbine endwall flows[J]. Journal of Engineering for Thermal Energy and Power,2018,33(8): 20-29. (in Chinese)
    [7] 张伸展,温风波,赵志奇,等. 高压涡轮封严冷气对主流气动性能的影响[J]. 航空动力学报,2018,33(5): 1215-1225.

    ZHANG Shenzhan,WEN Fengbo,ZHAO Zhiqi,et al. Effects of the rim seal coolant gas on aerodynamic performance of mainstream flow in high-pressure turbine[J]. Journal of Aerospace Power,2018,33(5): 1215-1225. (in Chinese)
    [8] DEVENPORT W J,AGARWAL N K,DEWITZ M B,et al. Effects of a fillet on the flow past a wing-body junction[J]. AIAA Journal,2012,28(12): 2017-2024.
    [9] RUBECHINI F, GIOVANNINI M, ARNONR A, et al. Reducing secondary flow losses in low-pressure turbines with blade fences: Part I design in an engine-like environment[R]. ASME Paper GT2019-91280, 2019.
    [10] GIOVANNINI M, RUBECHINI F, AMATO G, et al. Reducing secondary flow losses in low-pressure turbines with blade fences: Part Ⅱ experimental validation on linear cascades[R]. ASME Paper GT2019-91284, 2019.
    [11] 米攀,李清华,安利平. 多级轴流压气机静子三维造型优化设计[J]. 燃气涡轮试验与研究,2017,30(5): 13-17. doi: 10.3969/j.issn.1672-2620.2017.05.003

    MI Pan,LI Qinghua,AN Liping. 3D optimization design of multi-stage axial flow compressor stator[J]. Gas Turbine Experiment and Research,2017,30(5): 13-17. (in Chinese) doi: 10.3969/j.issn.1672-2620.2017.05.003
    [12] REZASOLTANI M,SCHOBEIRI M T,HAN J C. Experimental investigation of the effect of purge flow on film cooling effectiveness on a rotating turbine with non-axisymmetric endwall contouring[J]. Journal of Turbomachinery,2014,136(9): 91009.1-91009.10.
    [13] HARVEY N W,ROSE M G,TAYLOR M D,et al. Non-axisymmetric turbine endwall design: Part Ⅰ three-dimensional linear design system[J]. Journal of Turbomachinery,2000,122(2): 278-285. doi: 10.1115/1.555445
    [14] HARTLAND J C,GREGORY-SMITH D G,HARVEY N W,et al. Non-axisymmetric turbine endwall design: Part Ⅱ experimental validation[J]. Journal of Turbomachinery,2000,122(2): 286-293. doi: 10.1115/1.555446
    [15] ROSE M G. Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine[R]. ASME Paper 1994-GT-249, 1994.
    [16] HARVEY N W. Some effects of non-axisymmetric endwall profiling on axial flow compressor aerodynamics: Part Ⅰ linear cascade investigation[R]. ASME Paper GT-2008-50990, 2008.
    [17] HARVEY N W, OFFORD T P. Some effects of non-axisymmetric endwall profiling on axial flow compressor aerodynamics: Part Ⅱ multi-stage HPC CFD study[R].ASME Paper GT-2008-50991, 2008.
    [18] REGINA K, KALFAS A I, ABHARI R S, et al. Aerodynamic robustness of endwall contouring against rim seal purge flow[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Dusseldorf, Germany: International Gas Turbine Institute, 2014: 1-14.
    [19] 朱俊强,屈骁,张燕峰,等. 高负荷低压涡轮内部非定常流动机理及其控制策略研究进展[J]. 推进技术,2017,38(10): 2186-2199.

    ZHU Junqiang,QU Xiao,ZHANG Yanfeng,et al. Research progress on unsteady flow mechanism and control strategies of high-lift low pressure turbine[J]. Journal of Propulsion Technology,2017,38(10): 2186-2199. (in Chinese)
    [20] SCHUEPBACH P,ABHARI R S,ROSE M G,et al. Influence of rim seal purge flow on the performance of an endwall-profiled axial turbine[J]. Journal of Turbomachinery,2011,133(2): 021011.1-021011.10.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  202
  • HTML浏览量:  105
  • PDF量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 网络出版日期:  2023-02-09

目录

    /

    返回文章
    返回