留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不稳定燃烧状态多尺度峭度诊断方法

刘重阳 张祥 刘勇

刘重阳, 张祥, 刘勇. 不稳定燃烧状态多尺度峭度诊断方法[J]. 航空动力学报, 2023, 38(9):2116-2128 doi: 10.13224/j.cnki.jasp.20210727
引用本文: 刘重阳, 张祥, 刘勇. 不稳定燃烧状态多尺度峭度诊断方法[J]. 航空动力学报, 2023, 38(9):2116-2128 doi: 10.13224/j.cnki.jasp.20210727
LIU Chongyang, ZHANG Xiang, LIU Yong. Multi-scale kurtosis index diagnosis method of unstable combustion states[J]. Journal of Aerospace Power, 2023, 38(9):2116-2128 doi: 10.13224/j.cnki.jasp.20210727
Citation: LIU Chongyang, ZHANG Xiang, LIU Yong. Multi-scale kurtosis index diagnosis method of unstable combustion states[J]. Journal of Aerospace Power, 2023, 38(9):2116-2128 doi: 10.13224/j.cnki.jasp.20210727

不稳定燃烧状态多尺度峭度诊断方法

doi: 10.13224/j.cnki.jasp.20210727
基金项目: 中国航发自主创新专项资金项目(ZZCX-2019-009)
详细信息
    作者简介:

    刘重阳(1980-),男,博士生,主要从事航空发动机燃烧室试验测试技术研究

  • 中图分类号: V231.2

Multi-scale kurtosis index diagnosis method of unstable combustion states

  • 摘要:

    为建立先进航空发动机和燃气轮机燃烧室工程试验中不稳定燃烧状态评定方法,提出了一种基于燃烧室压力脉动信号多尺度峭度指标的诊断方法,联合诊断两种不稳定燃烧状态:燃烧不稳定(CI)和火焰不稳定(FI),并在气体燃料旋流燃烧室和航空煤油贫油预混预蒸发燃烧室两组试验中进行验证分析。研究结果表明:采用规范化后的平均峭度指标,可用作CI状态判据,但不适用于FI诊断;采用基于时间尺度无关性的最佳时间尺度来定义的CI峭度指标和FI峭度指标,可以反映压力振荡等级和压力时序间歇性,且各自与CI和FI程度形成递增关系;建立的瞬时压力峭度和间歇性峭度综合判定准则,可为燃烧室燃烧不稳定性在线评价提供判据。

     

  • 图 1  几种典型燃烧状态下的燃烧室DP及其分布

    Figure 1.  DP and its distribution of combustor in several typical combustion states

    图 2  振幅时序的计算

    Figure 2.  Time sequence computation of the amplitude

    图 3  G燃烧室不稳定燃烧状态诊断试验模型

    Figure 3.  Test model of of G combustor for unstablecombustion state diagnosis

    图 4  G燃烧室试验DP信号

    Figure 4.  DP signal of G combustor test

    图 5  G燃烧室不同当量比下${\overline K_p}$${\overline K_s}$

    Figure 5.  ${\overline K_p}$ and ${\overline K_s}$ of G combustor at different fuel equivalence ratios

    图 6  GC03工况高速图像处理的火焰尾缘位置时序信号

    Figure 6.  Time signal of flame trailing edge position using image processing under GC03 condition

    图 7  L燃烧室不稳定燃烧状态诊断试验测量布局

    Figure 7.  Measurement layout of L combustor for unstable combustion state diagnosis

    图 8  L燃烧室LA01~LA06工况试验DP信号

    Figure 8.  DP signal of L combustor test at condition LA01−LA06

    图 9  L燃烧室不同当量比下${\overline K_p}$${\overline K_s}$

    Figure 9.  ${\overline K_p}$ and ${\overline K_s}$ of L combustor at different fuel equivalence ratios

    图 10  G燃烧室变当量比下的连续DP信号

    Figure 10.  Continuous time signal of DP under varied fuel equivalence ratio conditions in G combustor

    图 11  G燃烧室变当量比下的瞬时峭度时序

    Figure 11.  Time sequence of instantaneous kurtosis under varied fuel equivalence ratio conditions in G combustor

    图 12  L燃烧室变当量比连续DP信号

    Figure 12.  Continuous time signal of DP under varied fuel equivalence ratio conditions in L combustor

    图 13  L燃烧室变当量比连续瞬时峭度时序

    Figure 13.  Time sequence of instantaneous kurtosis under varied fuel equivalence ratio conditions in L combustor

    图 14  G燃烧室不同时间尺度下的${\overline K_{p\tau }}$

    Figure 14.  ${\overline K_{p\tau }}$ under different time scales in G combustor

    图 15  G燃烧室不同尺度倍率下的${\overline K_{s\tau }}$

    Figure 15.  ${\overline K_{s\tau }}$ under different time scale factors in G combustor

    表  1  典型工况下的DP平均峭度和间歇性峭度

    Table  1.   DP mean kurtosis and intermittent kurtosis under typical operating conditions

    状态${\overline K_p}$${\overline K_s}$
    稳定燃烧0.33980.3255
    CI1.45910.3371
    CI前的FI0.84280.5588
    下载: 导出CSV

    表  2  G燃烧室燃烧状态识别试验工况表

    Table  2.   Test conditions of combustion state identification in G combustor

    工况$\dot { {m} } _{ \rm{a} }$/(g/s)ΦQ/kW${\overline K_p}$${\overline K_s}$状态
    GA019.240.391.1660.33980.3255稳定
    GA029.240.340.9990.28290.4618稳定
    GA039.240.280.8330.37250.4236稳定
    GA049.240.260.7830.35540.3326稳定
    GA059.240.230.6830.54780.4411稳定
    GA069.240.190.5830.27060.5791FI
    GB019.850.421.3330.29960.4103稳定
    GB029.850.371.1660.31620.4428稳定
    GB039.850.320.9990.31960.4643稳定
    GB049.850.260.8330.43340.4733稳定
    GB059.850.240.7490.77630.5493FI
    GB069.850.210.6661.37890.4822CI
    GC0111.000.381.3330.31430.3666稳定
    GC0211.000.331.1660.35820.3346稳定
    GC0311.000.280.9990.84280.5588FI
    GC0411.000.260.9161.45490.3739CI
    GC0511.000.240.8331.45880.4696CI
    GC0611.000.210.7501.45910.3371CI
    下载: 导出CSV

    表  3  L燃烧室燃烧状态识别试验工况表

    Table  3.   Test conditions of combustion state identification in L combustor

    工况$\dot {{m} }_{{{\rm{a}}} }$/(g/s)ΦQ/kW${\overline K_p}$${\overline K_s}$状态
    LA011000.7520.70.92460.5917FI
    LA021000.7320.10.96450.9378FI
    LA031000.7019.31.36540.7340CI
    LA041000.6818.71.37500.8294CI
    LA051000.5615.51.43890.6202CI
    LA061000.4913.51.44960.6198CI
    LB011300.8127.91.21470.8230CI
    LB021300.7726.51.22610.9287CI
    LB031300.7124.51.21620.9914CI
    LB041300.7024.11.17481.1267CI
    LB051300.6522.41.28260.8090CI
    LB061300.5619.31.39950.6339CI
    LC011400.7527.91.22471.1041CI
    LC021400.7126.41.27730.8471CI
    LC031400.6725.01.24430.9431CI
    LC041400.6524.21.22270.9077CI
    LC051400.6022.31.32140.8497CI
    LC061400.5620.81.31880.8726CI
    下载: 导出CSV
  • [1] NATANZON M S, CULICK F E C. Combustion instability[M]. Moscow: AIAA, 1999.
    [2] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: operational experience fundamental mechanisms and modeling[M]. Reston, US: AIAA, 2005: 68-73.
    [3] CHANDRACHUR B, O’CONNOR J, RAY A. Data-driven detection and early prediction of thermoacoustic instability in a multi-nozzle combustor[EB/OL]. [2022-05-22]. https://doi.Org/10.1080/00102202.2020.1820495.
    [4] SONG W J,CHA D J. Temporal kurtosis of dynamic pressure signal as a quantitative measure of combustion instability[J]. Applied Thermal Engineering,2016,104(1): 577-586.
    [5] SANTOS E A,MARTINS C A,JÚNIOR C L N. A new approach to treating pressure oscillations in combustion instability phenomena[J]. Applied Acoustics,2016,114: 27-35. doi: 10.1016/j.apacoust.2016.07.006
    [6] ROUWENHORS D, POLIFKE W, HERMAN J. Online monitoring of thermoacoustic eigenmodes in annular combustion systems based on a state space model[R]. ASME Paper GT2016-56671, 2016.
    [7] KOBAYASHI H,GOTODA H,TACHIBANA S. Nonlinear determinism in degenerated combustion instability in a gas turbine model combustor[J]. Statistical Mechanics and its Applications,2018,510(15): 345-354.
    [8] BUSCHHAGEN T, GEJJI R, PHILO J, et al. Experimental investigation of self-excited combustion instabilities in a lean, premixed, gas turbine combustor at high pressure[R]. ASME Paper GT2017-64614, 2017.
    [9] LAERA D, BERTOLOTTO E, FERRANTE A, et al. Modelling of thermoacoustic combustion instabilities phenomena: application to an experimental rig for testing full scale burners[R]. ASME Paper GT2014-25273, 2014.
    [10] WORTH N A,DAWSON J R. Effect of equivalence ratio on the modal dynamics of azimuthal combustion instabilities[J]. Proceedings of the Combustion Institute,2017,36(3): 3743-3751. doi: 10.1016/j.proci.2016.06.115
    [11] HALE A A, COTHRAN W D, SABO K M. Analysis technique to determine the underlying wave structure of combustion instabilities from surface mounted high response static pressure sensors[R]. ASME Paper GT2018-75509, 2018.
    [12] BALUSAMY S,LI L B,HAN Z,et al. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing[J]. Proceedings of the Combustion Institute,2015,35(3): 3229-3236. doi: 10.1016/j.proci.2014.05.029
    [13] BHATTACHARYA A, GUPTA B, HANSDA S, et al. Lean blowout phenomena and prior detection of lean blowout in a premixed model annular combustor[R].ASME Paper GTINDIA2019-2491, 2019.
    [14] 金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
    [15] ANGELLO L. Tuning approaches for DLN combustor performance and reliability[R]. Palo Alto, CA: Electric Power Research Institute Report 1005037, 2005.
    [16] 郑丹伟,刘勇,张祥. 基于火焰图像诊断的模型燃烧室燃烧不稳定特性[J]. 航空动力学报,2021,36(7): 1481-1488. doi: 10.13224/j.cnki.jasp.20200425

    ZHENG Danwei,LIU Yong,ZHANG Xiang. Combustion instability characteristics of model combustor based on flame image diagnosis[J]. Journal of Aerospace Power,2021,36(7): 1481-1488. (in Chinese) doi: 10.13224/j.cnki.jasp.20200425
    [17] NAIR S, LIEUWEN T. Acoustic detection of imminent blowout in pilot and swirl stabilized combustors[R]. ASME Paper GT2003-38074, 2003.
    [18] 郗涛, 杨威振. 优化VMD与CNN 在齿轮箱故障诊断方面的研究[EB/OL].[2022-05-22]. https://doi.org/10.13433/j.cnki.1003-8728.20200521.
    [19] 侯泽林. 旋转机械故障诊断的研究现状及发展前景[J]. 机械研究与应用,2021,34(4): 210-213. doi: 10.16576/j.cnki.1007-4414.2021.04.064

    HOU Zelin. Research status and development prospect of fault diagnosis of the rotating machinery[J]. Mechanical Research and Application,2021,34(4): 210-213. (in Chinese) doi: 10.16576/j.cnki.1007-4414.2021.04.064
    [20] 吕凯波,娄培生,谷丰收,等. 基于声压信号能量峭度的早期切削颤振预警技术研究[J]. 振动与冲击,2021,40(20): 50-55. doi: 10.13465/j.cnki.jvs.2021.20.007

    LÜ Kaibo,LOU Peisheng,GU Fengshou,et al. A study on early chatter monitoring based on energy kurtosis index of acoustic signals[J]. Journal of Vibration and Shock,2021,40(20): 50-55. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.20.007
    [21] JOO S, CHOI J, LEE M C, et al. Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread[EB/OL]. [2022-05-22].https: //doi.org/10.1016/j.energy.2021.120180.
    [22] CHOIB J, CHOI O, LEE M C, et al. On the observation of the transient behavior of gas turbine combustion instability using the entropy analysis of dynamic pressure[EB/OL]. [2022-05-22]. https://doi.org/10.1016/j.expthermflusci.2020.110099.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  148
  • HTML浏览量:  32
  • PDF量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-26
  • 网络出版日期:  2022-12-14

目录

    /

    返回文章
    返回