留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于残差NLSTM网络和注意力机制的航空发动机剩余使用寿命预测

陈保家 郭凯敏 陈法法 肖文荣 李公法 陶波

陈保家, 郭凯敏, 陈法法, 等. 基于残差NLSTM网络和注意力机制的航空发动机剩余使用寿命预测[J]. 航空动力学报, 2023, 38(5):1176-1184 doi: 10.13224/j.cnki.jasp.20210728
引用本文: 陈保家, 郭凯敏, 陈法法, 等. 基于残差NLSTM网络和注意力机制的航空发动机剩余使用寿命预测[J]. 航空动力学报, 2023, 38(5):1176-1184 doi: 10.13224/j.cnki.jasp.20210728
CHEN Baojia, GUO Kaimin, CHEN Fafa, et al. Prediction of remaining useful life of aero-engine based on residual NLSTM neural network and attention mechanism[J]. Journal of Aerospace Power, 2023, 38(5):1176-1184 doi: 10.13224/j.cnki.jasp.20210728
Citation: CHEN Baojia, GUO Kaimin, CHEN Fafa, et al. Prediction of remaining useful life of aero-engine based on residual NLSTM neural network and attention mechanism[J]. Journal of Aerospace Power, 2023, 38(5):1176-1184 doi: 10.13224/j.cnki.jasp.20210728

基于残差NLSTM网络和注意力机制的航空发动机剩余使用寿命预测

doi: 10.13224/j.cnki.jasp.20210728
基金项目: 国家自然科学基金(51975324,52075292); 机械传动国家重点实验室开放基金(SKLMT-MSKFKT-202020);水电机械设备设计与维护湖北省重点实验室(三峡大学)开放基金(2020KJX02,2021KJX02,2021KJX13);武汉科技大学冶金装备及其控制教育部重点实验室开放基金(MECOMF2021B04)
详细信息
    作者简介:

    陈保家(1977-),男,教授,博士,研究方向为机械装备状态监测、故障诊断及可靠性评估与寿命预测

    通讯作者:

    陈法法(1983-),男,教授,博士,研究方向为机电设备检测与智能运维、工业自动化及机器人控制。E-mail:chenfafa2005@126.com

  • 中图分类号: V240.2

Prediction of remaining useful life of aero-engine based on residual NLSTM neural network and attention mechanism

  • 摘要:

    针对长短期记忆(LSTM)网络对于多维数据特征识别和提取上存在不足的问题,在其改进模型嵌套式长短期记忆(NLSTM)网络的基础上,提出了一种基于注意力机制和残差NLSTM网络的剩余使用寿命预测方法。该方法将双层NLSTM网络代替残差块中的主网络,保留捷径连接中的卷积神经网络结构,既能充分提取时序特征又能保证有用数据在网络层中的跳层传递,并融入注意力机制构建多层残差网络,注意力机制的使用能够选择出对预测结果有重要影响的信息,有效提高预测的准确率。在航空发动机退化实验数据集上进行实验分析,结果表明:所述方法能有效建立监测数据与发动机健康状态之间的关系,剩余使用寿命预测误差较未改进残差结构方法平均降低10.8%,比未融入注意力机制方法平均降低18.9%,有效提高了预测精度。

     

  • 图 1  NLSTM网络结构

    Figure 1.  Structure of NLSTM neural network

    图 2  LSTM与NLSTM计算图

    Figure 2.  Calculation graph of LSTM and NLSTM

    图 3  残差块结构

    Figure 3.  Structure of residual block

    图 4  注意力机制

    Figure 4.  Attention mechanism

    图 5  ResNLSTM-attention网络

    Figure 5.  ResNLSTM-attention network

    图 6  ResNLSTM-attention RUL预测流程图

    Figure 6.  Flow chart of ResNLSTM-attention RUL prediction

    图 7  不同数据集的所有发动机RUL

    Figure 7.  All engines RUL in different dataset

    图 8  发动机RUL预测过程

    Figure 8.  Engine RUL prediction process

    表  1  C-MAPSS数据集描述

    Table  1.   Description of C-MAPSS dataset

    数据集训练集
    (发动机数量)
    测试集
    (发动机数量)
    操作
    条件
    故障
    模式
    FD00110010011
    FD00226025961
    FD00310010012
    FD00424824962
    下载: 导出CSV

    表  2  ResNLSTM-attention网络参数

    Table  2.   ResNLSTM-attention network parameters

    网络层层参数输出尺寸
    输入层时间步:36(36,14)
    NLSTM层单元数:14(36,14)
    Conv1D层单元数:14,核尺寸:1(36,14)
    NLSTM层单元数:7(36,7)
    Conv1D层单元数:7,核尺寸:1(36,7)
    Attention层单元数:32(36,7)
    Attention输出层单元数:32(None,32)
    Dense层单元数:1(None,1)
    下载: 导出CSV

    表  3  方均根误差结果

    Table  3.   Result of root mean square error

    子数据集σrms平均值
    第1次第2次第3次
    FD00112.5212.5012.5612.53
    FD00219.3720.3421.82 20.51
    FD00311.9412.0312.4812.15
    FD00422.2920.9923.8022.36
    下载: 导出CSV

    表  4  评分函数结果

    Table  4.   Result of score function

    子数据集Sf平均值
    第1次第2次第3次
    FD001279259257265
    FD0027614962328 1195
    FD003249258345284
    FD0043444172429072692
    下载: 导出CSV

    表  5  C-MAPSS数据集消融实验结果对比

    Table  5.   Comparison of the results of ablation experiments in the C-MAPSS dataset

    方法FD001FD002FD003FD004
    NLSTM-attention13.4924.6112.5824.18
    ResNLSTM15.3223.5016.6824.80
    本文方法预测平均值12.5320.5112.1522.36
    本文方法预测最优值12.5020.3411.9420.99
    下载: 导出CSV

    表  6  C-MPASS数据集下不同方法的方均根误差结果对比

    Table  6.   Comparison of root mean square error results of different methods in the C-MPASS dataset

    方法σrms
    FD001FD002FD003FD004
    CNN[3], 201618.4530.2919.8229.16
    LSTM-FNN[4], 201716.1424.4916.1828.17
    RBM-LSTM-FNN[6], 201912.5622.7312.1022.66
    Auto-Encoder[7], 201914.7422.0717.4823.49
    CMRSA[9], 202115.0023.2217.2323.74
    CNN-FNN[19], 201812.6122.3612.6422.43
    Auto-Encoder[20], 202013.5819.5919.1622.15
    DCNN-FNN[21], 202012.6128.5112.6230.73
    本文方法预测平均值12.5320.5112.1522.36
    本文方法预测最优值12.5020.3411.9420.99
    下载: 导出CSV

    表  7  C-MPASS数据集下不同方法的评分函数结果对比

    Table  7.   Comparison of score function results of different methods in the C-MPASS data set

    方法Sf
    FD001FD002FD003FD004
    CNN[3], 201612901357015967886
    LSTM-FNN[4], 201733844508525550
    RBM-LSTM-FNN[6], 201923133702512840
    Auto-Encoder[7], 201927330995743202
    CMRSA[9], 20213812176699413564
    DBN[18], 2017640108516837210
    CNN-FNN[19], 20182741041228412466
    Auto-Encoder[20], 2020220265017272901
    本文方法预测平均值26511952842692
    本文方法预测最优值2574962491724
    下载: 导出CSV
  • [1] 彭宇,刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报,2014,35(3): 481-495. doi: 10.19650/j.cnki.cjsi.2014.03.001

    PENG Yu,LIU Datong. Data-driven prognostics and health management: a review of recent advances[J]. Chinese Journal of Scientific Instrument,2014,35(3): 481-495. (in Chinese) doi: 10.19650/j.cnki.cjsi.2014.03.001
    [2] LEI Yaguo,LI Naipeng,GUO Liang,et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing,2018,104(5): 799-834.
    [3] BABU G S, ZHAO Peilin, LI Xiaoli. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]// International Conference on Database Systems for Advanced Applications. Cham, Switzerland: Springer, 2016: 214-228.
    [4] ZHENG Shuai, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, US: IEEE, 2017: 88-95.
    [5] WANG Jiujian, WEN Guilin, YANG Shaopu, et al. Remaining useful life estimation in prognostics using deep bidirectional lstm neural network[C]// Prognostics and System Health Management Conference (PHM-Chongqing). Chongqing, China: IEEE, 2018: 1037-1042.
    [6] ELLEFSEN A L,BJORLYKHAUG E,AESOY V,et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering and System Safety,2019,183(3): 240-251.
    [7] YU W,KIM I I Y,MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing,2019,129(8): 764-780.
    [8] 朱霖,宁芊,雷印杰,等. 基于遗传算法选优的集成手段与时序卷积网络的涡扇发动机剩余寿命预测[J]. 计算机应用,2020,40(12): 3534-3540.

    ZHU Lin,NING Qian,LEI Yinjie,et al. Remaining useful life prediction for turbofan engines by genetic algorithm-based selective ensembling and temporal convolutional network[J]. Journal of Computer Applications,2020,40(12): 3534-3540. (in Chinese)
    [9] 牟含笑, 郑建飞, 胡昌华, 等. 基于CDBN与BiLSTM 的多元退化设备剩余寿命预测[J/OL]. [2022-06-27]. http://kns.cnki.net/kcms/detail/11.1929.v.20210510.1354.004.html.
    [10] 叶瑞达,王卫杰,何亮,等. 基于残差自注意力机制的航空发动机RUL预测[J]. 光学精密工程,2021,29(6): 1482-1490. doi: 10.37188/OPE.20212906.1482

    YE Ruida,WANG Weijie,HE Liang,et al. RUL prediction of aero-engine based on residual self-attention mechanism[J]. Optics and Precision Engineering,2021,29(6): 1482-1490. (in Chinese) doi: 10.37188/OPE.20212906.1482
    [11] CAI Yongping,CEN Yuefeng,CEN Gang,et al. Temperature prediction of PMSMs using pseudo-siamese Nested LSTM[J]. World Electric Vehicle Journal,2021,12(2): 57-71. doi: 10.3390/wevj12020057
    [12] MONIZ J R A, KRUEGER D. Nested LSTMS[C]// Asian Conference on Machine Learning. Seoul, Korea: The Journal of Machine Learning Research, 2017: 530-544.
    [13] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision. Cham, Switzerland: Springer, 2016: 630-645.
    [14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, US: Curran Associates Inc, 2017: 5998-6008.
    [15] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]// 2008 international Conference on Prognostics and Health Management. Denver, US: IEEE, 2008: 1-9.
    [16] WU Yuting,YUAN Mei,DONG Shaopeng,et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing,2018,275(1): 167-179.
    [17] HEIMES F O. Recurrent neural networks for remaining useful life estimation[C]// 2008 International Conference on Prognostics and Health Management. Denver, US: IEEE, 2008: 6-12.
    [18] CHONG Z,LIM P,QIN A K,et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. Transactions on Neural Networks and Learning Systems,2017,28(10): 2306-2318. doi: 10.1109/TNNLS.2016.2582798
    [19] LI Xiang,DING Qian,SUN Jianqiao. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety,2018,172(4): 1-11.
    [20] YU W,KIM I Y,MECHEFSKE C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering and System Safety,2020,199(7): 1-12.
    [21] XU Xin,WU Qianhui,LI Xiu,et al. Dilated convolution neural network for remaining useful life prediction[J]. Journal of Computing and Information Science in Engineering,2019,20(2): 1-14.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  154
  • HTML浏览量:  93
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回