留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机篦齿流动熵产分析及系统低熵产篦齿构造

刘晓静 丁水汀 邱天 刘传凯 李果 赵志高

刘晓静, 丁水汀, 邱天, 等. 航空发动机篦齿流动熵产分析及系统低熵产篦齿构造[J]. 航空动力学报, 2023, 38(9):2107-2115 doi: 10.13224/j.cnki.jasp.20210730
引用本文: 刘晓静, 丁水汀, 邱天, 等. 航空发动机篦齿流动熵产分析及系统低熵产篦齿构造[J]. 航空动力学报, 2023, 38(9):2107-2115 doi: 10.13224/j.cnki.jasp.20210730
LIU Xiaojing, DING Shuiting, QIU Tian, et al. Analysis of flow entropy generation in aero-engine grate and construction of low entropy generation grate[J]. Journal of Aerospace Power, 2023, 38(9):2107-2115 doi: 10.13224/j.cnki.jasp.20210730
Citation: LIU Xiaojing, DING Shuiting, QIU Tian, et al. Analysis of flow entropy generation in aero-engine grate and construction of low entropy generation grate[J]. Journal of Aerospace Power, 2023, 38(9):2107-2115 doi: 10.13224/j.cnki.jasp.20210730

航空发动机篦齿流动熵产分析及系统低熵产篦齿构造

doi: 10.13224/j.cnki.jasp.20210730
详细信息
    作者简介:

    刘晓静(1984-),女,助理研究员,博士生,主要从事航空发动机安全性与适航研究

    通讯作者:

    李果(1983-),男,副教授、博士生导师,博士,主要从事航空发动机安全性与适航研究。E-mail:09869@buaa.edu.cn

  • 中图分类号: V232.3

Analysis of flow entropy generation in aero-engine grate and construction of low entropy generation grate

  • 摘要:

    建立篦齿熵产分析的数值模拟方法并经试验验证方法的准确性,进而揭示了台阶式篦齿的倾角、齿顶宽度、齿高、台阶高度变化下的流动熵产机理及导致熵产的主要流动特征。在此基础上最终从系统熵产视角对篦齿进行优化和特性分析。结果表明:篦齿齿顶区域相对耗散强度较大,导致该区域存在的齿顶涡具有较强增阻作用,对于提升篦齿局部熵产,降低系统熵产有重要作用。通过主动构造齿顶涡(增阻涡)可以实现增强篦齿局部熵产、减小泄漏量的设计目标。优化后的台阶式篦齿结构较初始台阶齿的封严性能提升24%。

     

  • 图 1  CFM56-7发动机涡轮盘腔空气系统封严结构局部示意图

    Figure 1.  Partial schematic diagram of sealing structure of CFM56-7 engine turbine disk cavity air system

    图 2  台阶式篦齿几何结构

    Figure 2.  Stepped grate geometry

    图 3  全局最小网格尺寸无关性计算

    Figure 3.  Calculation of global minimum mesh size independence

    图 4  局加密网格最小尺寸无关性计算

    Figure 4.  Calculation of minimum size independence of local refined mesh

    图 5  网格划分及附面层网格、齿尖网格局部加密

    Figure 5.  Mesh generation and local densification of boundary layer mesh and tooth tip mesh

    图 6  台阶式篦齿二维静止试验系统

    Figure 6.  Two-dimensional static test system for stepped grate

    图 7  台阶式篦齿试验件模型

    Figure 7.  Test piece model of stepped grate

    图 8  验证性试验结果与数值计算结果比对

    Figure 8.  Comparison between confirmatory test results and numerical calculation results

    图 9  篦齿内流线分布

    Figure 9.  Streamline distribution in grate

    图 10  篦齿内局部熵产分布

    Figure 10.  Distribution of local entropy generation in grate

    图 11  篦齿倾角变化齿顶局部熵产分布图

    Figure 11.  Distribution diagram of local entropy generation at the tooth top with grate inclination angle change

    图 12  篦齿倾角变化的流线图

    Figure 12.  Streamline diagram of grate inclination angle change

    图 13  齿顶宽度变化齿顶局部熵产分布图

    Figure 13.  Distribution diagram of local entropy generation at tooth top with tooth top width change

    图 14  齿顶宽度变化的流线图

    Figure 14.  Streamline diagram of tooth top width change

    图 15  齿高变化局部熵产分布图

    Figure 15.  Distribution diagram of local entropy generation withtooth height change

    图 16  齿高变化的流线图

    Figure 16.  Streamline diagram of tooth height change

    图 17  台阶高度变化局部熵产分布图

    Figure 17.  Distribution diagram of local entropy generation with step height change

    图 18  台阶高度变化的流线图

    Figure 18.  Streamline diagram of step height change

    图 19  高压卸荷腔流路

    Figure 19.  Flow path of high pressure unloading chamber

    图 20  优化台阶式篦齿几何模型

    Figure 20.  Optimizing the geometric model of stepped grate

    图 21  优化台阶式篦齿流线图

    Figure 21.  Streamline diagram of optimized stepped grate

    图 22  优化台阶式篦齿熵产分布图

    Figure 22.  Distribution diagram of entropy generation of optimized stepped grate

    表  1  篦齿几何参数符号及初始值

    Table  1.   Symbols and initial values of geometric parameters of grate

    几何参数初始值
    台阶高度H/mm3
    齿间距L/mm8
    齿高h/mm5
    齿顶宽度t/mm0.3
    篦齿倾角α/(°)90
    篦齿前后侧夹角θ/(°)15
    径向间隙c/mm0.36
    轴向间隙b/mm3
    迎风侧齿根倒圆半径Rl/mm0.5
    背风侧齿根倒圆半径Rr/mm0.5
    下载: 导出CSV

    表  2  试验中台阶式篦齿结构几何参数

    Table  2.   Geometric parameters of stepped grate structure in test bench

    几何参数取值
    台阶高度H/mm3
    齿间距L/mm6
    齿高h/mm6
    齿顶宽度t/mm0.8
    篦齿倾角α/(°)90
    篦齿前后侧夹角θ/(°)16
    径向间隙c/mm0.6
    轴向间隙b/mm2.4
    迎风侧齿根倒圆Rl/mm0.5
    背风侧齿根倒圆Rr/mm0.5
    下载: 导出CSV

    表  3  优化后台阶式篦齿结构的几何参数取值表

    Table  3.   Table of geometric parameters for optimized stepped grate structure

    几何参数取值
    台阶高度H/mm1
    齿间距L/mm6
    齿高h/mm4
    齿顶宽度t/mm0.2
    篦齿倾角α/(°)50
    篦齿前后侧夹角θ/(°)15
    径向间隙c/mm0.36
    轴向间隙b/mm3
    迎风侧齿根倒圆Rl/mm0.5
    背风侧齿根倒圆Rr/mm0.5
    下载: 导出CSV

    表  4  设计工况下不同篦齿结构封严性能对比

    Table  4.   Comparison of sealing performance of different grate structures under designed conditions

    篦齿结构换算流量性能提升百分比/%
    文献[13]平齿0.019944
    图2初始台阶齿0.014002430
    图18优化台阶齿0.00969575324
    下载: 导出CSV
  • [1] Federal Aviation Administration, Department of Transportation. Airworthiness standards, aircraft engines: CFR 14 Part 33[S]. Washington DC: Federal Aviation Administration, 2012: 33.1-33.201.
    [2] BUNKER R S. Gas turbine heat transfer: ten remaining hot gas path challenges[J]. Journal of Turbomachinery,2007,129(2): 193-201. doi: 10.1115/1.2464142
    [3] 倪萌,朱惠人,裘云,等. 航空发动机涡轮叶片冷却技术综述[J]. 燃气轮机技术,2005,18(4): 25-33. doi: 10.3969/j.issn.1009-2889.2005.04.006

    NI Meng,ZHU Huiren,QIU Yun,et al. Overview of the cooling technology of aero-engine turbine blade[J]. Gas Turbine Technology,2005,18(4): 25-33. (in Chinese) doi: 10.3969/j.issn.1009-2889.2005.04.006
    [4] RHODE D L,DEMKO J A,TRAEGNER U K,et al. Prediction of incompressible flow in labyrinth seals[J]. Journal of Fluids Engineering,1986,108(1): 19-25. doi: 10.1115/1.3242535
    [5] DEMKO J A,MORRISON G L,RHODE D L. Effect of shaft rotation on the incompressible flow in a labyrinth seal[J]. Journal of Propulsion and Power,1990,6(2): 171-176. doi: 10.2514/3.23240
    [6] DEMKO J A,MORRISON G L,RHODE D L. The prediction and measurement of incompressible flow in a labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power,1989,111(4): 697-702. doi: 10.1115/1.3240315
    [7] RHODE D L,SOBOLIK S R. Simulation of subsonic flow through a generic labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power,1986,108(4): 674-680. doi: 10.1115/1.3239964
    [8] RHODE D L,HIBBS R I. New model for flow over open cavities: Part Ⅰ model development[J]. Journal of Propulsion and Power,1992,8(2): 392-297. doi: 10.2514/3.23490
    [9] RHODE D L,HIBBS R I. New model for flow over open cavities: Part Ⅱ assessment for seal leakage[J]. Journal of Propulsion and Power,1992,8(2): 398-402. doi: 10.2514/3.23491
    [10] RHODE D L,HIBBS R I. Clearance effects on corresponding annular and labyrinth seal flow leakage characteristics[J]. Journal of Tribology,1993,115(4): 699-704. doi: 10.1115/1.2921696
    [11] PRASAD B, SETHU MANAVALAN V, NANJUNDA R N. Computational and experimental investigations of straight-through labyrinth seals[R]. ASME Paper 97-GT-326, 1997.
    [12] DENECKE J, DULLENKOF K, WITTING S. Experimental investigation of the total temperrature increase and swirl development in rotating labyrinth seals[R]. ASME Paper GT-2005-68677, 2005.
    [13] STOFF H. Incompressible flow in a labyrinth seal[J]. Journal of Fluid Mechanics,1980,100(4): 817-829. doi: 10.1017/S0022112080001437
    [14] WILLENBORG K, KIM S, WITTIG S. Effects of Renolds number and pressure ratio on leakage loss and heat transfer in a stepped labyrinth seal[R]. ASME Paper 2001-GT-0123, 2001.
    [15] MILLWARD J A, EDWARDS M F. Windage heating of air passing through labyrinth seals[J]. Journal of Turbomachinery, 1996, 118(2): 414-419.
    [16] STOCKER H L, COX D M. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth, abradable, and honeycomb lands[R]. NASA CR-135307, 1977.
    [17] RHODE D L. Rub-groove width and depth effects on flow predictions for straight-through labyrinth seals[J]. Journal of Tribology,2004,126(4): 781-787. doi: 10.1115/1.1760555
    [18] KALI C N, MUSTHAFA T. The effects of tooth tip wear and its axial displacement in rub-grooves on leakage and windage heating of labyrinth seals with honeycomb lands[R]. AIAA-2007-5736, 2007
    [19] KUTZ K J , SPEER T M . Simulation of the secondary air system of aero engines[R]. ASME Paper 92-GT-068, 1992.
    [20] ZHANG M,YANG J,XU Wanjun,et al. Leakage and rotordynamic performance of a mixed labyrinth seal compared with that of a staggered labyrinth seal[J]. Journal of Mechanical Science and Technology,2017,31(5): 2261-2277. doi: 10.1007/s12206-017-0423-7
    [21] JIA X,ZHENG Q,JIANG Y,et al. Leakage and rotordynamic performance of T type labyrinth seal[J]. Aerospace Science and Technology,2019,88(5): 22-31.
    [22] NAYAK K C. Effect of rotation on leakage and windage heating in labyrinth seals with honeycomb lands[J]. Journal of Engineering for Gas Turbines and Power,2020,142(8): 081001.1-081001.11.
    [23] SUN D, ZHOU M, ZHAO H, et al. Numerical and experimental investigations on windage heating effect of labyrinth seals[J]. Journal of Aerospace Engineering, 2020, 33(5): 4020057.1-4020057.9 .
    [24] CHARAN N K , DUTTA P. Effect of rub-grooves on leakage and windage heating in straight-through labyrinth seals[J]. Journal of Tribology, 2016, 138(2): 022201.1-022201.11.
    [25] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
    [26] DAI Lu. Study on the improvement of resistance characteristics in stepped labyrinth seals[D]. Beijing: Beihang University, 2019
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  144
  • HTML浏览量:  118
  • PDF量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 网络出版日期:  2023-02-09

目录

    /

    返回文章
    返回